Recurrent inhibitory circuitry in the deep layers of the rabbit superior colliculus. 2000

J J Zhu, and F S Lo
Shanghai Brain Research Institute and Institute of Neuroscience, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.

1. Local inhibition in the deep layers of the superior colliculus plays a crucial role in sensorimotor integration. Using intracellular and extracellular recording techniques, we studied the organization of inhibitory circuits in the deep layers of the superior colliculus in anaesthetized rabbits. 2. We identified a new cell type in the deep superior colliculus that showed a characteristic burst response to stimulation of both the predorsal bundle and optic chiasm. The response had a jittering latency and failed to follow high frequency stimuli, indicating trans-synaptic (orthodromic) events. Moreover, the predorsal bundle stimulation-evoked orthodromic response could be made to collide with the response to a preceding stimulation of the optic chiasm, suggesting that burst-firing cells received excitatory inputs from the axonal collaterals of predorsal bundle-projecting cells. 3. Stimulation of the predorsal bundle could evoke an IPSP in predorsal bundle-projecting cells. The latency of the IPSP was 0.5-1.0 ms longer than the orthodromic response in burst-firing cells. Simultaneous recordings showed that the IPSP in predorsal bundle-projecting cells was preceded by a burst of extracellular spikes from burst-firing cells with short latency ( approximately 0.9 ms), indicating an inhibitory monosynaptic connection from burst-firing cells to predorsal bundle-projecting cells. 4. Burst-firing cells exhibited a prolonged depression after the predorsal bundle or optic chiasm stimulation due to an inhibitory postsynaptic potential. Latency analysis implies that burst-firing cells may form mutual inhibitory connections. 5. Together our results suggest that burst-firing cells and predorsal bundle-projecting cells form reciprocal excitatory and inhibitory connections and burst-firing cells may function as the recurrent inhibitory interneurons in the deep layers of the rabbit superior colliculus.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009476 Neurons, Efferent Neurons which send impulses peripherally to activate muscles or secretory cells. Efferent Neurons,Efferent Neuron,Neuron, Efferent
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic

Related Publications

J J Zhu, and F S Lo
January 1996, Visual neuroscience,
J J Zhu, and F S Lo
January 1989, Reviews of oculomotor research,
J J Zhu, and F S Lo
January 1993, Progress in brain research,
J J Zhu, and F S Lo
January 1992, The Journal of comparative neurology,
J J Zhu, and F S Lo
March 1973, Journal of neurophysiology,
J J Zhu, and F S Lo
October 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J J Zhu, and F S Lo
November 1983, Journal of neurophysiology,
Copied contents to your clipboard!