Intestinal fat suppresses protein-induced exocrine pancreatic secretion in chronically bile-pancreatic juice-diverted rats. 2000

H Hara, and C Sauchi, and T Nishi, and T Kasai
Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan. hara@chem.agr.hokudai.ac.jp

Previously, we showed that the increase in pancreatic enzyme secretion was lower after feeding a casein diet containing fat than that after feeding a fat-free casein diet in chronically bile-pancreatic juice (BPJ)-diverted rats. In the present study, we determined whether the suppressive effects of fats on flow volume of BPJ and pancreatic enzyme secretion depend on delaying gastric emptying and examined the characteristics of the suppression with intraduodenal instillation of soybean oil or lecithin in BPJ-diverted rats. The study was conducted as three separate experiments using conscious rats with chronic BPJ diversion by means of a common bile-pancreatic duct catheter. The flow volume of BPJ and the secretion of pancreatic amylase and trypsin were determined after intraduodenal instillation of the test solution. Exocrine pancreatic secretion was strongly stimulated by administration of guanidinated casein hydrolysate (HGC, 150 mg/ml) in chronic BPJ-diverted rats. However, pancreatic secretion after administration of an emulsion containing HGC with either soybean oil (100 mg/ml) or mixed fat (50 mg/ml soybean oil + 50 mg/ml lecithin) was much lower than that after administration of HGC alone. In contrast, administration of the soybean oil emulsion without HGC resulted in a small, but significant increase in the volume of BPJ. The suppressive effects of soybean oil (100 mg/ml) on the increases in the BPJ flow and enzyme secretion were similar to those of sodium taurocholate (10 mg/ml), and there was no additive effect of soybean oil on taurocholate suppression. In conclusion, duodenally instilled soybean oil suppressed increases in flow volume of BPJ and pancreatic enzyme secretion induced by HGC in chronic BPJ-diverted rats, showing that the suppressive effect of the fat does not depend on delaying gastric emptying.

UI MeSH Term Description Entries
D008297 Male Males
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010189 Pancreatic Juice The fluid containing digestive enzymes secreted by the pancreas in response to food in the duodenum. Juice, Pancreatic,Juices, Pancreatic,Pancreatic Juices
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001647 Bile Acids and Salts Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones. Bile Acid,Bile Salt,Bile Salts,Bile Acids,Acid, Bile,Acids, Bile,Salt, Bile,Salts, Bile
D013656 Taurocholic Acid The product of conjugation of cholic acid with taurine. Its sodium salt is the chief ingredient of the bile of carnivorous animals. It acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and cholerectic. Cholyltaurine,Taurine Cholate,Taurocholate,Sodium Taurocholate,Taurocholate Sodium,Taurocholic Acid, (5 alpha)-Isomer,Taurocholic Acid, (7 beta)-Isomer,Taurocholic Acid, Monolithium Salt,Taurocholic Acid, Monosodium Salt,Taurocholate, Sodium
D014280 Triglycerides An ester formed from GLYCEROL and three fatty acid groups. Triacylglycerol,Triacylglycerols,Triglyceride
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

H Hara, and C Sauchi, and T Nishi, and T Kasai
November 1986, Gastroenterology,
H Hara, and C Sauchi, and T Nishi, and T Kasai
November 1991, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
H Hara, and C Sauchi, and T Nishi, and T Kasai
March 2004, Biochimica et biophysica acta,
H Hara, and C Sauchi, and T Nishi, and T Kasai
September 1996, The American journal of physiology,
H Hara, and C Sauchi, and T Nishi, and T Kasai
February 1998, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
H Hara, and C Sauchi, and T Nishi, and T Kasai
October 1975, Science (New York, N.Y.),
Copied contents to your clipboard!