[Analysis of the mechanism for the anti-inflammatory effect of the anti-rheumatic drug auranofin]. 2000

M Yamashita
Department of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.

Effects of auranofin, an orally active chrysotherapeutic agent, were examined on the production of prostaglandin E2 (PGE2) and nitric oxide (NO) in rat peritoneal macrophages and in RAW 264.7 cells, a murine macrophage-like cell line. Auranofin (1-10 microM) inhibited PGE2 production in rat peritoneal macrophages stimulated with 12-O-tetra-decanoylphorbol 13-acetate (TPA, 16.2 nM) at 8-20 h, but did not affect PGE2 production at 4 h. However, in non-stimulated rat peritoneal macrophages, auranofin increased PGE2 production at 4 h and had no effect on PGE2 production at 8-20 h. It was proved that auranofin (1-10 microM) increased COX (cyclooxygenase)-1-dependent PGE2 production and inhibited COX-2-dependent PGE2 production in rat peritoneal macrophages. Auranofin showed no effect on the enzyme activities of the purified COX-1 and COX-2 proteins. Furthermore, auranofin did not affect the COX-1 protein level, but inhibited the TPA-induced expression of COX-2 protein. Therefore, it was suggested that auranofin inhibited PGE2 production by inhibiting the COX-2 protein induction in TPA-stimulated macrophages. In RAW 264.7 cells, auranofin (0.3-3 microM) inhibited lipopolysaccharide-induced NO synthesis by inhibiting the induction of NO synthase (NOS) protein expression. Auranofin did not affect the enzyme activity of iNOS (inducible NOS). Finally, using rat peritoneal macrophages, the effects of auranofin on PGE2 production and NO production were determined. Auranofin (10 microM) strongly inhibited the production of PGE2 and NO, and the induction of COX-2 protein and NOS protein by TPA. Indomethacin, a COX inhibitor, partially inhibited NO production at the concentration at which PGE2 production was completely inhibited. On the other hand, L-NG-monomethyl-L-arginine acetate (L-NMMA), a NOS inhibitor, partially inhibited PGE2 production. NO production was completely inhibited at the same concentration as shown above. These findings suggest that PGE2 production and NO production partially affect each other. Therefore, the inhibition of PGE2 production by auranofin might be partly due to the inhibition of NO production, and the inhibition of NO production by auranofin be partly due to the inhibition of PGE2 production. In conclusion, auranofin inhibits both PGE2 production and NO production by inhibiting the upregulation of mRNA levels of COX-2 and NOS.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001310 Auranofin An oral chrysotherapeutic agent for the treatment of rheumatoid arthritis. Its exact mechanism of action is unknown, but it is believed to act via immunological mechanisms and alteration of lysosomal enzyme activity. Its efficacy is slightly less than that of injected gold salts, but it is better tolerated, and side effects which occur are potentially less serious. Crisinor,Ridaura,Ridauran,SK&F D 39162,SK&F-39162,SK&F 39162,SK&F39162
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation

Related Publications

M Yamashita
December 1985, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
M Yamashita
October 1986, Agents and actions,
M Yamashita
March 1998, Nihon rinsho. Japanese journal of clinical medicine,
M Yamashita
December 2001, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver,
Copied contents to your clipboard!