Allosteric regulation of the class III anaerobic ribonucleotide reductase from bacteriophage T4. 2000

J Andersson, and M Westman, and A Hofer, and B M Sjoberg
Department of Molecular Biology, Stockholm University, SE-10691 Stockholm, Sweden.

Ribonucleotide reductase (RNR) is an essential enzyme in all organisms. It provides precursors for DNA synthesis by reducing all four ribonucleotides to deoxyribonucleotides. The overall activity and the substrate specificity of RNR are allosterically regulated by deoxyribonucleoside triphosphates and ATP, thereby providing balanced dNTP pools. We have characterized the allosteric regulation of the class III RNR from bacteriophage T4. Our results show that the T4 enzyme has a single type of allosteric site to which dGTP, dTTP, dATP, and ATP bind competitively. The dissociation constants are in the micromolar range, except for ATP, which has a dissociation constant in the millimolar range. ATP and dATP are positive effectors for CTP reduction, dGTP is a positive effector for ATP reduction, and dTTP is a positive effector for GTP reduction. dATP is not a general negative allosteric effector. These effects are similar to the allosteric regulation of class Ib and class II RNRs, and to the class Ia RNR of bacteriophage T4, but differ from that of the class III RNRs from the host bacterium Escherichia coli and from Lactococcus lactis. The relative rate of reduction of the four substrates was measured simultaneously in a mixed-substrate assay, which mimics the physiological situation and illustrates the interplay between the different effectors in vivo. Surprisingly, we did not observe any significant UTP reduction under the conditions used. Balancing of the pyrimidine deoxyribonucleotide pools may be achieved via the dCMP deaminase and dCMP hydroxymethylase pathways.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D003570 Cytidine Triphosphate Cytidine 5'-(tetrahydrogen triphosphate). A cytosine nucleotide containing three phosphate groups esterified to the sugar moiety. CTP,CRPPP,Magnesium CTP,Mg CTP,Triphosphate, Cytidine
D003838 Deoxyadenine Nucleotides Adenine nucleotides which contain deoxyribose as the sugar moiety. Deoxyadenosine Phosphates,Nucleotides, Deoxyadenine,Phosphates, Deoxyadenosine
D003845 Deoxycytosine Nucleotides Cytosine nucleotides which contain deoxyribose as the sugar moiety. Deoxycytidine Phosphates,Nucleotides, Deoxycytosine,Phosphates, Deoxycytidine
D003848 Deoxyguanine Nucleotides Guanine nucleotides which contain deoxyribose as the sugar moiety. Deoxyguanosine Phosphates,Nucleotides, Deoxyguanine,Phosphates, Deoxyguanosine
D003856 Deoxyuracil Nucleotides Uracil nucleotides which contain deoxyribose as the sugar moiety. Deoxyuridine Phosphates,Nucleotides, Deoxyuracil,Phosphates, Deoxyuridine
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric

Related Publications

J Andersson, and M Westman, and A Hofer, and B M Sjoberg
January 2000, The Journal of biological chemistry,
J Andersson, and M Westman, and A Hofer, and B M Sjoberg
August 1994, The Journal of biological chemistry,
J Andersson, and M Westman, and A Hofer, and B M Sjoberg
September 1991, The Journal of biological chemistry,
J Andersson, and M Westman, and A Hofer, and B M Sjoberg
January 2002, Progress in nucleic acid research and molecular biology,
J Andersson, and M Westman, and A Hofer, and B M Sjoberg
September 1998, The Journal of biological chemistry,
J Andersson, and M Westman, and A Hofer, and B M Sjoberg
August 1996, The Journal of biological chemistry,
J Andersson, and M Westman, and A Hofer, and B M Sjoberg
January 2016, eLife,
J Andersson, and M Westman, and A Hofer, and B M Sjoberg
January 1978, Ciba Foundation symposium,
J Andersson, and M Westman, and A Hofer, and B M Sjoberg
January 1982, The Journal of biological chemistry,
J Andersson, and M Westman, and A Hofer, and B M Sjoberg
October 1996, The Journal of biological chemistry,
Copied contents to your clipboard!