Glycosphingolipid antibodies and blood-nerve barrier in autoimmune demyelinative neuropathy. 2000

T Kanda, and M Yamawaki, and T Iwasaki, and H Mizusawa
Department of Neurology, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan. t-kanda.nuro@med.tmd.ac.jp

OBJECTIVE To evaluate morphologic changes in small endoneurial vessels in patients with autoimmune demyelinative neuropathy and antiglycosphyngolipid antibodies. BACKGROUND Although a humoral immune cause has been postulated for various demyelinating neuropathies, the mechanism by which large molecules like immunoglobulins can traverse the blood-nerve barrier (BNB) to enter the endoneurium is not understood. METHODS We examined histologic and ultrastructural changes in small endoneurial vessels in sural nerve biopsy specimens from autoimmune demyelinative neuropathy patients, with or without anti-glycosphingolipid (GSL) antibodies. Density of small endoneurial vessels, mean endothelial area, mean luminal area, and the percentage of endothelial cell junctions (that make up the BNB) that showed evidence of disruption were evaluated. RESULTS Only junctional disruption showed a significant difference: autoimmune demyelinative neuropathy patients with anti-GSL antibodies showed more BNB disruption than autoimmune demyelinative neuropathy patients without antibodies or control patients with nonautoimmune neuropathies. The most commonly observed endoneurial change in antibody-positive autoimmune demyelinative neuropathy patients was the finding of continuous, patent spaces lacking tight junctions between endothelial cells. CONCLUSIONS Brain endothelial cells and endoneurial endothelial cells share various GSL antigens, including GM1 and GD1b gangliosides, with peripheral nerve tissues. Circulating anti-GSL antibodies could damage cell-to-cell attachments in endoneurial endothelium. This barrier disruption may permit the large molecules like immunoglobulins to enter the endoneurial space, contributing to development of autoimmune demyelinative neuropathy.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D011129 Polyradiculoneuropathy Diseases characterized by injury or dysfunction involving multiple peripheral nerves and nerve roots. The process may primarily affect myelin or nerve axons. Two of the more common demyelinating forms are acute inflammatory polyradiculopathy (GUILLAIN-BARRE SYNDROME) and POLYRADICULONEUROPATHY, CHRONIC INFLAMMATORY DEMYELINATING. Polyradiculoneuritis refers to inflammation of multiple peripheral nerves and spinal nerve roots. Autoimmune Demyelinating Disease, Peripheral,Demyelinating Autoimmune Disease, Peripheral,Demyelinating Disease, Peripheral Autoimmune,Peripheral Autoimmune Demyelinating Disease,Polyradiculoneuritis,Polyradiculoneuritides,Polyradiculoneuropathies
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005260 Female Females
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D006028 Glycosphingolipids Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage) Asialoganglioside,Asialogangliosides,Glycosphingolipid,Sphingoglycolipid,Sphingoglycolipids

Related Publications

T Kanda, and M Yamawaki, and T Iwasaki, and H Mizusawa
September 1980, The New England journal of medicine,
T Kanda, and M Yamawaki, and T Iwasaki, and H Mizusawa
November 2009, Rinsho shinkeigaku = Clinical neurology,
T Kanda, and M Yamawaki, and T Iwasaki, and H Mizusawa
January 1994, Muscle & nerve,
T Kanda, and M Yamawaki, and T Iwasaki, and H Mizusawa
January 1984, Acta neuropathologica,
T Kanda, and M Yamawaki, and T Iwasaki, and H Mizusawa
June 1972, Nature: New biology,
T Kanda, and M Yamawaki, and T Iwasaki, and H Mizusawa
January 2018, Frontiers in neuroscience,
T Kanda, and M Yamawaki, and T Iwasaki, and H Mizusawa
January 2018, Frontiers in neuroscience,
T Kanda, and M Yamawaki, and T Iwasaki, and H Mizusawa
January 1993, Acta neuropathologica,
T Kanda, and M Yamawaki, and T Iwasaki, and H Mizusawa
April 1984, Annals of neurology,
T Kanda, and M Yamawaki, and T Iwasaki, and H Mizusawa
July 1988, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!