Metabolism of recombination coding ends in scid cells. 2000

M L Brown, and Y Chang
Department of Microbiology, Arizona State University, Tempe, AZ 85287, USA.

V(D)J recombination cleavage generates two types of dsDNA breaks: blunt signal ends and covalently sealed hairpin coding ends. Although signal ends can be directly ligated to form signal joints, hairpin coding ends need to be opened and subsequently processed before being joined. However, the underlying mechanism of coding end resolution remains undefined. The current study attempts to delineate this process by analyzing various structures of coding ends made in situ from recombination-inducible pre-B cell lines of both normal and scid mice. These cell lines were derived by transformation of B cell precursors with the temperature-sensitive Abelson murine leukemia virus. Our kinetic analysis revealed that under conditions permissive to scid transformants, hairpin coding ends could be nicked to generate 3' overhangs and then processed into blunt ends. The final joining of these blunt ends followed the same kinetics as signal joint formation. The course of this process is in sharp contrast to coding end resolution in scid heterozygous transformants that express the catalytic subunit of DNA-dependent protein kinase, in which hairpin end opening, processing, and joining proceeded very rapidly and appeared to be closely linked. Furthermore, we demonstrated that the opening of hairpin ends in scid cells could be manipulated by different culture conditions, which ultimately influenced not only the level and integrity of the newly formed coding joints, but also the extent of microhomology at the coding junctions. These results are discussed in the context of scid leaky recombination.

UI MeSH Term Description Entries
D007144 Immunoglobulin J-Chains A 15 kDa "joining" peptide that forms one of the linkages between monomers of IMMUNOGLOBULIN A or IMMUNOGLOBULIN M in the formation of polymeric immunoglobulins. There is one J chain per one IgA dimer or one IgM pentamer. It is also involved in binding the polymeric immunoglobulins to POLYMERIC IMMUNOGLOBULIN RECEPTOR which is necessary for their transcytosis to the lumen. It is distinguished from the IMMUNOGLOBULIN JOINING REGION which is part of the IMMUNOGLOBULIN VARIABLE REGION of the immunoglobulin light and heavy chains. Ig J Chains,J-Chains, Immunoglobulin,Ig J-Peptide,Immunoglobulin J Polypeptide,Immunoglobulin J-Peptide,Chains, Ig J,Ig J Peptide,Immunoglobulin J Chains,Immunoglobulin J Peptide,J Chains, Ig,J Chains, Immunoglobulin,J Polypeptide, Immunoglobulin,J-Peptide, Ig,J-Peptide, Immunoglobulin,Polypeptide, Immunoglobulin J
D007145 Immunoglobulin kappa-Chains One of the types of light chains of the immunoglobulins with a molecular weight of approximately 22 kDa. Ig kappa Chains,Immunoglobulins, kappa-Chain,kappa-Immunoglobulin Light Chains,Immunoglobulin kappa-Chain,kappa-Chain Immunoglobulins,kappa-Immunoglobulin Light Chain,kappa-Immunoglobulin Subgroup VK-12,kappa-Immunoglobulin Subgroup VK-21,Chains, Ig kappa,Immunoglobulin kappa Chain,Immunoglobulin kappa Chains,Immunoglobulins, kappa Chain,Light Chain, kappa-Immunoglobulin,Light Chains, kappa-Immunoglobulin,kappa Chain Immunoglobulins,kappa Chains, Ig,kappa Immunoglobulin Light Chain,kappa Immunoglobulin Light Chains,kappa Immunoglobulin Subgroup VK 12,kappa Immunoglobulin Subgroup VK 21,kappa-Chain, Immunoglobulin,kappa-Chains, Immunoglobulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000076228 MRE11 Homologue Protein A component of the MRN complex along with Rad50 and Nibrin. Together, these perform a critical function in the repair of DOUBLE-STRANDED DNA BREAKS; RECOMBINATIONAL DNA REPAIR; maintenance of TELOMERE integrity and MEIOSIS. MRE11, which contains a poly(ADP)-ribose binding motif and associates with PARP1, possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity. Mutations in the MRE11 gene are associated with ATAXIA-TELANGIECTASIA-like disorder 1. MRE11A Protein,Meiotic Recombination 11 Homolog 1 Protein,Homologue Protein, MRE11
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M L Brown, and Y Chang
September 2002, Journal of immunology (Baltimore, Md. : 1950),
M L Brown, and Y Chang
January 1995, Immunogenetics,
M L Brown, and Y Chang
December 1993, Genetics,
M L Brown, and Y Chang
October 1990, Molecular and cellular biology,
M L Brown, and Y Chang
December 1993, The Journal of experimental medicine,
Copied contents to your clipboard!