Adenosine and muscle vasodilatation in acute systemic hypoxia. 2000

J M Marshall
Department of Physiology, The Medical School, Birmingham, UK.

Adenosine is released by skeletal and cardiac muscles when their metabolism increases: it serves to couple O2 supply with O2 demand by causing vasodilatation. This review argues that adenosine plays a similar role in skeletal muscle in systemic hypoxia. It accounts for approximately 50% of the increase in muscle vascular conductance and, within muscle, it causes dilatation of individual arterioles, thus maximizing the distribution of O2 and allowing O2 consumption to remain constant when O2 delivery is reduced. In vivo and in vitro studies have indicated that adenosine can induce dilatation in several different ways. This review argues that during systemic hypoxia, adenosine is predominantly released from the endothelium and acts on endothelial A1 receptors to produce dilatation in a nitric oxide (NO)-dependent manner. A1 receptor stimulation increases the synthesis of NO by a process initiated by opening of ATP-sensitive K+ (KATP) channels. Moreover, recent findings suggest that prostaglandins also make a major contribution to the hypoxia-induced dilatation, but that the dilator pathways for adenosine, NO and prostaglandins are interdependent. In addition, adenosine released from the skeletal muscle fibres contributes indirectly to the dilatation by stimulating A1 and A2 receptors on the muscle fibres, opening KATP channels and allowing efflux of K+, which is a vasodilator. Finally, by acting on endothelial A1 receptors, adenosine attenuates the vasoconstrictor effects of constant or bursting patterns of sympathetic activity. This limits the extent to which the sympathetic nervous system can reduce O2 delivery to muscle when it is already compromised by systemic hypoxia.

UI MeSH Term Description Entries
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D014664 Vasodilation The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE. Vasodilatation,Vasorelaxation,Vascular Endothelium-Dependent Relaxation,Endothelium-Dependent Relaxation, Vascular,Relaxation, Vascular Endothelium-Dependent,Vascular Endothelium Dependent Relaxation
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

J M Marshall
February 2001, Acta physiologica Scandinavica,
J M Marshall
December 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
J M Marshall
January 1985, Scandinavian journal of thoracic and cardiovascular surgery,
Copied contents to your clipboard!