Thyrotropin regulation of cyclic adenosine monophosphate production in human coronary artery smooth muscle cells. 2000

D F Sellitti, and D Dennison, and T Akamizu, and S Q Doi, and L D Kohn, and H Koshiyama
Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA. DSELLITTI@USUHS.MIL

Thyroid disease has been associated with the occurrence of pathophysiologic changes in the vasculature that may result in part from altered serum thyroid hormone and serum lipid levels. Thyrotropin (TSH) levels are also altered in thyroid disease, but a direct effect of TSH on vascular smooth muscle has not previously been considered. In the present study, human coronary artery smooth muscle cells (CASMC) were induced into two morphologically distinct forms by culturing in either (1) growth factor supplemented, 0.5% serum medium (SmGM-3) or (2) basal medium (SmBM) plus 10% fetal bovine serum (FBS). Intracellular cyclic adenosine monophosphate (cAMP) accumulation was determined by radioimmunoassay after exposure to increasing doses of bovine TSH. Cells grown in SmBM/10% FBS for 3 days exhibited a dose-dependent increase in intracellular cAMP that reached a level 10 times higher than baseline at the highest dose examined (100 mIU/mL). In contrast, cells grown in SmGM-3 medium exhibited no change in intracellular cAMP on exposure to increasing TSII. Low serum (0.5% FBS) reduced the ability of TSH to stimulate cAMP above the control value in CASMC. Pretreatment of CASMC with either transforming growth factor-beta1 (TGF-beta1) or tumor necrosis factor-alpha (TNF-alpha) lowered basal levels of cAMP production, but did not inhibit the ability of TSH to stimulate cAMP production. Human, but not rat aortic smooth muscle cells in culture also responded to TSH with a significant increase in cAMP. The results of this study suggest that TSH may exert direct effects on vascular smooth muscle mediated by adenylate cyclase activation that could conceivably affect the progression of vascular disease associated with thyroid dysfunction.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011989 Receptors, Thyrotropin Cell surface proteins that bind pituitary THYROTROPIN (also named thyroid stimulating hormone or TSH) and trigger intracellular changes of the target cells. TSH receptors are present in the nervous system and on target cells in the thyroid gland. Autoantibodies to TSH receptors are implicated in thyroid diseases such as GRAVES DISEASE and Hashimoto disease (THYROIDITIS, AUTOIMMUNE). Receptors, Thyroid Stimulating Hormone,TSH Receptors,Thyroid Stimulating Hormone Receptors,Thyrotropin Receptors,LATS Receptors,Receptor, LATS Immunoglobulins,Receptors, LATS,Receptors, Long-Acting Thyroid Stimulator,Receptors, TSH,TSH Receptor,Thyroid Stimulating Hormone Receptor,Thyrotropin Receptor,Receptor, TSH,Receptor, Thyrotropin,Receptors, Long Acting Thyroid Stimulator
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D F Sellitti, and D Dennison, and T Akamizu, and S Q Doi, and L D Kohn, and H Koshiyama
March 2016, Cellular signalling,
D F Sellitti, and D Dennison, and T Akamizu, and S Q Doi, and L D Kohn, and H Koshiyama
March 1977, Molecular pharmacology,
D F Sellitti, and D Dennison, and T Akamizu, and S Q Doi, and L D Kohn, and H Koshiyama
August 1994, The Prostate,
D F Sellitti, and D Dennison, and T Akamizu, and S Q Doi, and L D Kohn, and H Koshiyama
December 1996, Endocrine,
D F Sellitti, and D Dennison, and T Akamizu, and S Q Doi, and L D Kohn, and H Koshiyama
February 1986, Circulation research,
D F Sellitti, and D Dennison, and T Akamizu, and S Q Doi, and L D Kohn, and H Koshiyama
April 1971, Japanese journal of pharmacology,
D F Sellitti, and D Dennison, and T Akamizu, and S Q Doi, and L D Kohn, and H Koshiyama
March 1978, Science (New York, N.Y.),
D F Sellitti, and D Dennison, and T Akamizu, and S Q Doi, and L D Kohn, and H Koshiyama
July 2019, Thyroid : official journal of the American Thyroid Association,
D F Sellitti, and D Dennison, and T Akamizu, and S Q Doi, and L D Kohn, and H Koshiyama
April 2004, Molecular and cellular endocrinology,
Copied contents to your clipboard!