Ionotropic glutamate receptor-mediated responses in the rat primary somatosensory cortex evoked by noxious and innocuous cutaneous stimulation in vivo. 2000

M Pollard
Department of Pharmacology, University of Oxford, UK. marie.pollard@pharm.ox.ac.uk

To examine the involvement of different ionotropic glutamate receptors in the mediation of responses evoked by noxious cutaneous stimulation, single unit recordings were made from 31 neurons in the primary somatosensory (SI) cortex of rats anesthetized with urethane. To compare synaptic receptor pharmacology across somatosensory submodalities, 13 of the neurons were also tested with an innocuous, cutaneous air jet stimulus. Mechanical (HT) responses, evoked by a 5-s noxious pinch, decayed gradually upon termination of the stimulus and lasted on average for 15.1+/-1.9 s (+/-SEM; n=10). An increase in baseline activity was also observed during noxious stimulus trials of 5-min stimulus intervals. A correlation between increase in mechanical or thermal HT responses and baseline activity was found for some neurons. However, the normalized ratios of the mechanical or thermal HT response to baseline activity during iontophoretic application of (RS)-3-(2-carboxypiperazine-4-yl)-propyl-l-phosphonic acid (CPP), an N-methyl-D-aspartic acid (NMDA) receptor antagonist (0.6+/-0.1; n=11, or 6-nitro-7-sulfamoylbenz[f]quinoxaline-2,3-dione (NBQX), an (RS)-alpha-amino-3-hydroxy5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist (0.8+/-0.1; n=11), suggest that the reductions in baseline activity did not account for the reductions of the mechanical or thermal HT responses observed, which were reduced proportionally more than the baseline activity. A 10-ms air jet evoked a biphasic increase in action potentials above an average background activity of 7+/-2 spikes/s (n=13). The early phase of this low-threshold (LT) response was within two or three 10-ms bins and had an average firing rate of 74+/-11 spikes/s evoked in the first 10-ms bin (n=13). In eight neurons, the early LT response was followed by a lower frequency excitatory component lasting an average of 415+/-92 ms. Iontophoretic application of CPP reduced responses evoked by a noxious pinch (21+/-10% of control responses; n=19) and a noxious thermal stimulus (24+/-18%; n=5). The fast component of the LT responses was only reduced to 85+/-4% (n=12). A slower component of the LT responses, when present, was also reduced by CPP (15+/-19%; n=4). Iontophoretic application of NBQX reduced responses evoked by a noxious pinch (42+/-12%; n=19) and a noxious thermal stimulus (63+/-16%; n=8). The fast component of the LT responses was reduced to 43+/-6% (n=12) and the slower component to 32+/-20% (n=6). These data show that both NMDA and AMPA/kainate receptors are involved in the mediation of SI high-threshold responses. This same combination of glutamate receptors also mediates low-threshold synaptic responses.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011810 Quinoxalines Quinoxaline
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary

Related Publications

M Pollard
August 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!