Receptive field organization of ganglion cells in the frog retina: contributions from cones, green rods and red rods. 1975

A C Bäckström, and T Reuter

1. The impulse discharge of ganglion cells was recorded with extracellular micro-electrodes in the excised and opened eye of the common frog, Rana temporaria. 2. When a single unit was isolated, the cell type was first determined according to the Maturana, Lettvin, McCulloch & Pitts (1960) classification with the aid of varying moving and stationary stimuli. 3. Class 4 cells respond only to a decrease of light when cones are stimulated but respond to an increase of light when green rods are stimulated. A distinct class of deviating class 4 cells was found that give a brief high frequency burst at 'off' from their small excitatory receptive fields (ERF); unlike typical class 4 cells they possess a purely inhibitory surrounding field (IRF).4. The contributions from the cones and the green and red rods were isolated by measuring the thresholds of the discharges with on-off stimuli of varying wave-lengths against strong yellow backgrounds, or against a very weak background or no background at all. The spatial distribution of the contributions to the ERF was determined by mapping threshold profiles, and additional information about ERF and IRF was obtained from area-threshold curves. 5. The cone-mediated ERFs were found to be 0-06-0-50 mm wide (1-5-12 degrees of visual field), which agrees well with the sizes of the dendritic trees of the ganglion cells. The green rod-mediated ERFs can be 0-5-1-5 mm wide and have less distinct boundaries than the cone-mediated. The green rod-mediated ERF of an individual ganglion cell is always larger than the cone-mediated ERF of the same cell. The red rod-mediated ERFs seem to be somewhat larger than the cone-mediated but smaller than the green rod-mediated. 6. The green rods contribute only to the on thresholds of class 1, 2 and 4 cells, but both to on and off in typical class 3 cells, while the cones contribute to on and off in classes 1-3 and only to off in class 4.7. When the red rods begin to contribute during dark adaptation they seem to enter the cone but not the green rod channels. 8. All three receptor types contribute to the IRF surrounding the ERF of classes 1, 2, 3 and deviating class 4 cells. Normal class 4 cells have no IRF. 9. The organization of the receptive fields is discussed in relation to the anatomy and electrophysiology of the cell types transmitting the signals from the receptors to the ganglion cells.

UI MeSH Term Description Entries
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003116 Color The visually perceived property of objects created by absorption or reflection of specific wavelengths of light. Colors
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

A C Bäckström, and T Reuter
November 1967, Experimental neurology,
A C Bäckström, and T Reuter
January 1981, Vision research,
A C Bäckström, and T Reuter
April 1978, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
A C Bäckström, and T Reuter
November 1978, Journal of neurophysiology,
A C Bäckström, and T Reuter
January 1985, Biological cybernetics,
Copied contents to your clipboard!