Energy balance in DNFB-treated and untreated frog muscle. 1975

N A Curtin, and R C Woledge

1. Heat production and chemical changes were measured in untreated and dinitrofluorobenzene (DNFB)-treated muscles during isometric tetani. Levels of total creatine (Ct), free creatine, ATP, ADP, AMP, inorganic phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-diphosphate, pyruvate, phosphoenolpyruvate, and lactate were measured. Changes in inosinic acid (IMP) were also measured. 2. DNFB effectively inhibited the creatine kinase reaction (Lohmann reaction). 3. Our major finding is that even after effective treatment with DNFB the observed heat plus work after 2 sec and 5 sec of stimulation is significantly greater than the enthalpy change produced by the measured chemical changes. This confirms that an unidentified exothermic process occurs during muscle contraction; this conclusion was reached previously from studies of untreated muscle. 4. The unexplained heat plus work is unlikely to be derived from glycolytic reactions since under anaerobic conditions no formation of lactate, pyruvate, phosphoenolpyruvate or fructose-1,6-diphosphate could be detected in either untreated or DNFB-treated muscles even 34 sec after a series of three 5 sec isometric tetani. 5. In the first 2 sec of stimulation the unexplained heat plus work is less in DNFB-treated muscles than in untreated muscles. However from 2 to 5 sec of stimulation the unexplained heat plus work is the same in treated and untreated muscles.

UI MeSH Term Description Entries
D007291 Inosine Monophosphate Inosine 5'-Monophosphate. A purine nucleotide which has hypoxanthine as the base and one phosphate group esterified to the sugar moiety. IMP,Inosinic Acid,Ribosylhypoxanthine Monophosphate,Inosinic Acids,Sodium Inosinate,Acid, Inosinic,Acids, Inosinic,Inosinate, Sodium,Monophosphate, Inosine,Monophosphate, Ribosylhypoxanthine
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009578 Nitrobenzenes BENZENE derivatives carrying nitro group substituents.
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004139 Dinitrofluorobenzene Irritants and reagents for labeling terminal amino acid groups. DNFB,Fluorodinitrobenzene,1-Fluoro-2,4-dinitrobenzene,1 Fluoro 2,4 dinitrobenzene
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof

Related Publications

N A Curtin, and R C Woledge
August 1995, Journal of internal medicine,
N A Curtin, and R C Woledge
June 1974, Biochimica et biophysica acta,
N A Curtin, and R C Woledge
August 1973, The Journal of physiology,
N A Curtin, and R C Woledge
October 1989, Indian journal of biochemistry & biophysics,
N A Curtin, and R C Woledge
February 2004, Biochimica et biophysica acta,
N A Curtin, and R C Woledge
September 1970, The Journal of physiology,
N A Curtin, and R C Woledge
April 2004, Clinical nutrition (Edinburgh, Scotland),
N A Curtin, and R C Woledge
January 1985, Klinische Wochenschrift,
Copied contents to your clipboard!