Involvement of dopamine D2 autoreceptors in the ventral tegmental area on alcohol and saccharin intake of the alcohol-preferring P rat. 2000

K L Nowak, and W J McBride, and L Lumeng, and T K Li, and J M Murphy
Department of Psychiatry, Indiana University School of Medicine, Indianapolis, USA.

BACKGROUND The ventral tegmental area (VTA) dopamine (DA) system is considered to be involved in mediating the actions of ethanol (EtOH). The objective of the present study was to examine the role of VTA DA D2 receptors in regulating EtOH intake of alcohol-preferring P rats. METHODS EtOH (10% v/v) and saccharin (SACC, 0.0125% g/v) intake during 2 hr of limited access was assessed after microinjections of the D2 agonist quinpirole and the D2 antagonist sulpiride into the anterior VTA (AVTA) of female P rats. Both EtOH-SACC alternate-day-access conditions and daily availability of EtOH and SACC solutions to separate groups of subjects were used. A second D2 agonist, quinelorane, and coadministration of 2.0 microg sulpiride with 2.0 microg quinpirole were tested in animals given limited access to EtOH. Finally, the effects of quinpirole injected 2 mm dorsal to the VTA and within the posterior VTA (PVTA) were assessed under EtOH-SACC alternate-day-access conditions. RESULTS Microinjections of 2.0-6.0 microg quinpirole into the AVTA dose dependently decreased EtOH intake 40-80% during the first 30 min of the limited access sessions but did not alter SACC intake. Injections of 2.0-4.0 microg quinelorane into the AVTA also reduced EtOH intake in the first 30 min. Administration of 0.5-2.0 microg sulpiride into the AVTA had no effect on either EtOH or SACC intakes but did attenuate the effects of quinpirole on reducing EtOH intake. Injections of 2.0-4.0 quinpirole 2 mm dorsal to the VTA did not alter EtOH or SACC intakes. Posterior VTA injections of quinpirole decreased EtOH and SACC intakes approximately 25-30% and 60-70%, respectively, in the first 30 min. None of the treatments altered intakes during the 30-120 min period. CONCLUSIONS The data suggest that DA neuronal activity within the AVTA may be important for maintaining EtOH drinking in P rats, whereas DA neuronal activity within the PVTA may be involved in regulating general drinking and/or motivational behaviors. Overall, the results confirm the involvement of mesolimbic DA in EtOH self-administration and suggest that there is functional heterogeneity within the VTA regulating drinking behavior of the P rat.

UI MeSH Term Description Entries
D005260 Female Females
D000428 Alcohol Drinking Behaviors associated with the ingesting of ALCOHOLIC BEVERAGES, including social drinking. Alcohol Consumption,Alcohol Intake,Drinking, Alcohol,Alcohol Drinking Habits,Alcohol Drinking Habit,Alcohol Intakes,Consumption, Alcohol,Drinking Habit, Alcohol,Habit, Alcohol Drinking,Habits, Alcohol Drinking,Intake, Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012439 Saccharin Flavoring agent and non-nutritive sweetener. Saccharin Calcium,Saccharin Sodium,Calcium, Saccharin
D013549 Sweetening Agents Substances that sweeten food, beverages, medications, etc., such as sugar, saccharine or other low-calorie synthetic products. (From Random House Unabridged Dictionary, 2d ed) Artificial Sweeteners,Sugar Substitutes,Sweeteners,Agent, Sweetening,Agents, Sweetening,Artificial Sweetener,Substitute, Sugar,Substitutes, Sugar,Sugar Substitute,Sweetener,Sweetener, Artificial,Sweeteners, Artificial,Sweetening Agent
D017448 Receptors, Dopamine D2 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES. Dopamine D2 Receptors,Dopamine-D2 Receptor,D2 Receptors, Dopamine,Dopamine D2 Receptor,Receptor, Dopamine-D2
D017557 Ventral Tegmental Area A region in the MESENCEPHALON which is dorsomedial to the SUBSTANTIA NIGRA and ventral to the RED NUCLEUS. The mesocortical and mesolimbic dopaminergic systems originate here, including an important projection to the NUCLEUS ACCUMBENS. Overactivity of the cells in this area has been suspected to contribute to the positive symptoms of SCHIZOPHRENIA. Area Tegmentalis Ventralis,Ventral Tegmental Area of Tsai,Area Tegmentalis Ventrali,Tegmental Area, Ventral,Tegmentalis Ventrali, Area,Tegmentalis Ventralis, Area
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018491 Dopamine Agonists Drugs that bind to and activate dopamine receptors. Dopamine Receptor Agonists,Dopaminergic Agonists,Agonists, Dopamine Receptor,Agonists, Dopaminergic,Dopamine Agonist,Dopamine Receptor Agonist,Dopaminergic Agonist,Receptor Agonists, Dopamine,Agonist, Dopamine,Agonist, Dopamine Receptor,Agonist, Dopaminergic,Agonists, Dopamine,Receptor Agonist, Dopamine
D018492 Dopamine Antagonists Drugs that bind to but do not activate DOPAMINE RECEPTORS, thereby blocking the actions of dopamine or exogenous agonists. Many drugs used in the treatment of psychotic disorders (ANTIPSYCHOTIC AGENTS) are dopamine antagonists, although their therapeutic effects may be due to long-term adjustments of the brain rather than to the acute effects of blocking dopamine receptors. Dopamine antagonists have been used for several other clinical purposes including as ANTIEMETICS, in the treatment of Tourette syndrome, and for hiccup. Dopamine receptor blockade is associated with NEUROLEPTIC MALIGNANT SYNDROME. Dopamine Antagonist,Dopamine Blocker,Dopamine Receptor Antagonist,Dopamine Receptor Antagonists,Dopaminergic Antagonist,Dopaminergic Antagonists,Antagonists, Dopamine,Antagonists, Dopamine Receptor,Antagonists, Dopaminergic,Dopamine Blockers,Antagonist, Dopamine,Antagonist, Dopamine Receptor,Antagonist, Dopaminergic,Blocker, Dopamine,Blockers, Dopamine,Receptor Antagonist, Dopamine,Receptor Antagonists, Dopamine

Related Publications

K L Nowak, and W J McBride, and L Lumeng, and T K Li, and J M Murphy
November 1984, The Journal of pharmacology and experimental therapeutics,
K L Nowak, and W J McBride, and L Lumeng, and T K Li, and J M Murphy
March 1997, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
K L Nowak, and W J McBride, and L Lumeng, and T K Li, and J M Murphy
January 2009, Psychopharmacology,
K L Nowak, and W J McBride, and L Lumeng, and T K Li, and J M Murphy
November 2006, Alcohol (Fayetteville, N.Y.),
K L Nowak, and W J McBride, and L Lumeng, and T K Li, and J M Murphy
February 2005, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
K L Nowak, and W J McBride, and L Lumeng, and T K Li, and J M Murphy
March 2011, The Journal of pharmacology and experimental therapeutics,
K L Nowak, and W J McBride, and L Lumeng, and T K Li, and J M Murphy
September 2011, Alcohol (Fayetteville, N.Y.),
K L Nowak, and W J McBride, and L Lumeng, and T K Li, and J M Murphy
January 1994, Alcohol (Fayetteville, N.Y.),
K L Nowak, and W J McBride, and L Lumeng, and T K Li, and J M Murphy
March 2005, Drug and alcohol dependence,
Copied contents to your clipboard!