S-Nitrosocysteine increases palmitate turnover on Ha-Ras in NIH 3T3 cells. 2000

T L Baker, and M A Booden, and J E Buss
Department of Zoology/Genetics and Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.

Ha-Ras is modified by isoprenoid on Cys(186) and by reversibly attached palmitates at Cys(181) and Cys(184). Ha-Ras loses 90% of its transforming activity if Cys(181) and Cys(184) are changed to serines, implying that palmitates make important contributions to oncogenicity. However, study of dynamic acylation is hampered by an absence of methods for acutely manipulating Ha-Ras palmitoylation in living cells. S-nitrosocysteine (SNC) and, to a more modest extent, S-nitrosoglutathione were found to rapidly increase [(3)H]palmitate incorporation into cellular or oncogenic Ha-Ras in NIH 3T3 cells. In contrast, SNC decreased [(3)H]palmitate labeling of the transferrin receptor and caveolin. SNC accelerated loss of [(3)H]palmitate from Ha-Ras, implying that SNC stimulated deacylation and permitted subsequent reacylation of Ha-Ras. SNC also decreased Ha-Ras GTP binding and inhibited phosphorylation of the kinases ERK1 and ERK2 in NIH 3T3 cells. Thus, SNC altered two important properties of Ha-Ras activation state and lipidation. These results identify SNC as a new tool for manipulating palmitate turnover on Ha-Ras and for studying requirements of repalmitoylation and the relationship between palmitate cycling, membrane localization, and signaling by Ha-Ras.

UI MeSH Term Description Entries
D009603 Nitroso Compounds Organic compounds containing the nitroso (-N Compounds, Nitroso
D010168 Palmitates Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid. Hexadecanoates,Palmitate
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016475 3T3 Cells Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION. 3T3 Cell,Cell, 3T3,Cells, 3T3
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D020559 Monomeric GTP-Binding Proteins A class of monomeric, low molecular weight (20-25 kDa) GTP-binding proteins that regulate a variety of intracellular processes. The GTP bound form of the protein is active and limited by its inherent GTPase activity, which is controlled by an array of GTPase activators, GDP dissociation inhibitors, and guanine nucleotide exchange factors. This enzyme was formerly listed as EC 3.6.1.47 G-Proteins, Monomeric,GTP-Binding Proteins, Monomeric,Monomeric G-Protein,Monomeric G-Proteins,Small G-Protein,Small G-Proteins,Small GTPase,Small GTPases,ras-Related GTP-Binding Protein,ras-Related GTPase,ras-Related GTPases,ras-Related G-Proteins,ras-Related GTP-Binding Proteins,G Proteins, Monomeric,G-Protein, Monomeric,G-Protein, Small,G-Proteins, Small,G-Proteins, ras-Related,GTP Binding Proteins, Monomeric,GTP-Binding Protein, ras-Related,GTP-Binding Proteins, ras-Related,GTPase, Small,GTPase, ras-Related,GTPases, Small,GTPases, ras-Related,Monomeric G Protein,Monomeric G Proteins,Monomeric GTP Binding Proteins,Protein, ras-Related GTP-Binding,Proteins, ras-Related GTP-Binding,Small G Protein,Small G Proteins,ras Related G Proteins,ras Related GTP Binding Protein,ras Related GTP Binding Proteins,ras Related GTPase,ras Related GTPases
D026403 S-Nitrosothiols A group of organic sulfur-containing nitrites, alkyl thionitrites. S-Nitrosothiols include compounds such as S-NITROSO-N-ACETYLPENICILLAMINE and S-NITROSOGLUTATHIONE. S-Nitrosothiol

Related Publications

T L Baker, and M A Booden, and J E Buss
May 1999, Experimental cell research,
T L Baker, and M A Booden, and J E Buss
October 1997, Biochemical and biophysical research communications,
T L Baker, and M A Booden, and J E Buss
June 1998, British journal of cancer,
T L Baker, and M A Booden, and J E Buss
January 1984, Nature,
T L Baker, and M A Booden, and J E Buss
July 1998, Biochemical and biophysical research communications,
T L Baker, and M A Booden, and J E Buss
May 2019, Biochemical and biophysical research communications,
T L Baker, and M A Booden, and J E Buss
October 1990, Molecular and cellular biology,
T L Baker, and M A Booden, and J E Buss
March 1988, The Journal of biological chemistry,
T L Baker, and M A Booden, and J E Buss
June 1988, Cancer research,
T L Baker, and M A Booden, and J E Buss
August 1995, European journal of cell biology,
Copied contents to your clipboard!