Is a closing "GA pair" a rule for stable loop-loop RNA complexes? 2000

F Ducongé, and C Di Primo, and J J Toulme
INSERM U386, Institut Fédératif de Recherche Pathologies Infectieuses, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux cedex, France.

RNA hairpin aptamers specific for the trans-activation-responsive (TAR) RNA element of human immunodeficiency virus type 1 were identified by in vitro selection (Ducongé, F., and Toulmé, J. J. (1999) RNA 5, 1605-1614). The high affinity sequences selected at physiological magnesium concentration (3 mm) were shown to form a loop-loop complex with the targeted TAR RNA. The stability of this complex depends on the aptamer loop closing "GA pair" as characterized by preliminary electrophoretic mobility shift assays. Thermal denaturation monitored by UV-absorption spectroscopy and binding kinetics determined by surface plasmon resonance show that the GA pair is crucial for the formation of the TAR-RNA aptamer complex. Both thermal denaturation and surface plasmon resonance experiments show that any other "pairs" leads to complexes whose stability decreases in the order AG > GG > GU > AA > GC > UA >> CA, CU. The binding kinetics indicate that stability is controlled by the off-rate rather than by the on-rate. Comparison with the complex formed with the TAR* hairpin, a rationally designed TAR RNA ligand (Chang, K. Y., and Tinoco, I. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8705-8709), demonstrates that the GA pair is a key determinant which accounts for the 50-fold increased stability of the TAR-aptamer complex (K(d) = 2.0 nm) over the TAR-TAR* one (K(d) = 92. 5 nm) at physiological concentration of magnesium. Replacement of the wild-type GC pair next to the loop of RNA I' by a GA pair stabilizes the RNA I'-RNA II' loop-loop complex derived from the one involved in the control of the ColE1 plasmid replication. Thus, the GA pair might be the preferred one for stable loop-loop interactions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006147 Guanine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin

Related Publications

F Ducongé, and C Di Primo, and J J Toulme
August 1993, Nucleic acids research,
F Ducongé, and C Di Primo, and J J Toulme
December 1996, Journal of molecular biology,
F Ducongé, and C Di Primo, and J J Toulme
October 2003, The Journal of biological chemistry,
F Ducongé, and C Di Primo, and J J Toulme
August 2011, Biophysical journal,
F Ducongé, and C Di Primo, and J J Toulme
June 2009, Biochemistry,
F Ducongé, and C Di Primo, and J J Toulme
July 2020, Proceedings of the National Academy of Sciences of the United States of America,
F Ducongé, and C Di Primo, and J J Toulme
September 2017, Nucleosides, nucleotides & nucleic acids,
F Ducongé, and C Di Primo, and J J Toulme
March 1996, Transfusion,
F Ducongé, and C Di Primo, and J J Toulme
June 2014, RNA (New York, N.Y.),
Copied contents to your clipboard!