Neutron carcinogenesis: past, present, and future. 1999

C K Hill, and D Williams-Hill
Department of Radiation Oncology, USC School of Medicine, Los Angeles 90089, USA. ckhill@hsc.usc.edu

An interest in the possible cancer causing ability of neutrons began soon after their discovery. Early use of neutrons from radioactive sources and from cyclotrons led to a need to define risk for such exposures. This need was soon followed by a more tangible need to define risk to the general population of high LET radiation from nuclear fall out and use of the Atomic bomb and possible use of the H-bomb. Neutrons were soon found to be very effective cell killing agents compared to conventional ionizing radiation. However High LET radiation sources and neutrons in particular, come in many different energies and from many types of sources. I will survey the differences between different energy neutrons and conventional types of radiation, particularly with respect to the dose rate of exposures and the influence of repair or lack thereof and more recently the effect of cell cycle distribution on the carcinogenic outcome. I will illustrate these ideas with examples of carcinogenicity studies and mutation studies from my own laboratory and in some cases from the work of others. Lastly I will introduce some possible avenues for molecular studies of neutron effects that might answer such vexing questions as the real risk at very low doses, is repair error free or error prone, do neutrons cause genetic instability for many cell generations after exposure, and others? There remain many questions about the biology of neutron action that require answers if we are to protect the ever increasing number of people exposed to them because of their growing use in medicine, in the military and in commercial industry.

UI MeSH Term Description Entries
D009502 Neutrons Electrically neutral elementary particles found in all atomic nuclei except light hydrogen; the mass is equal to that of the proton and electron combined and they are unstable when isolated from the nucleus, undergoing beta decay. Slow, thermal, epithermal, and fast neutrons refer to the energy levels with which the neutrons are ejected from heavier nuclei during their decay. Neutron
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018499 Linear Energy Transfer Rate of energy dissipation along the path of charged particles. In radiobiology and health physics, exposure is measured in kiloelectron volts per micrometer of tissue (keV/micrometer T). Energy Transfer, Linear,LET,Transfer, Linear Energy
D019105 Random Amplified Polymorphic DNA Technique Technique that utilizes low-stringency polymerase chain reaction (PCR) amplification with single primers of arbitrary sequence to generate strain-specific arrays of anonymous DNA fragments. RAPD technique may be used to determine taxonomic identity, assess kinship relationships, analyze mixed genome samples, and create specific probes. RAPD Technique,RAPD-PCR,Arbitrarily Primed PCR Reaction,RAPD Technic,Random Amplified Polymorphic DNA Technic,RAPD Technics,RAPD Techniques

Related Publications

C K Hill, and D Williams-Hill
March 2000, Carcinogenesis,
C K Hill, and D Williams-Hill
July 1976, The Journal of investigative dermatology,
C K Hill, and D Williams-Hill
July 1988, Journal of the National Cancer Institute,
C K Hill, and D Williams-Hill
July 2007, Arquivos brasileiros de endocrinologia e metabologia,
C K Hill, and D Williams-Hill
June 2020, Journal of physics. Condensed matter : an Institute of Physics journal,
C K Hill, and D Williams-Hill
January 1972, Acta radiologica. Supplementum,
C K Hill, and D Williams-Hill
March 2018, Bulletin of the Hospital for Joint Disease (2013),
C K Hill, and D Williams-Hill
June 2004, Journal of dental research,
C K Hill, and D Williams-Hill
October 1980, Biological psychiatry,
C K Hill, and D Williams-Hill
December 2012, Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA,
Copied contents to your clipboard!