Inhibitory action of the anomers of 2-deoxy-D-glucose tetraacetate on the metabolism of D-glucose in rat pancreatic islets. 2000

A Bakkali-Nadi, and M M Kadiata, and W J Malaisse
Laboratory of Experimental Medicine, Brussels Free University, Belgium.

BACKGROUND The tetra-acetate ester of 2-deoxy-D-glucose was recently found to either inhibit or augment insulin secretion, depending on the concentration of the ester. Both the positive and negative insulinotropic actions of the ester display anomeric specificity. METHODS The effects of the alpha- and beta-anomer of 2-deoxy-D-glucose tetra-acetate (5.0 mM) on the metabolism of D-[5-3H]glucose and D-[U-14C]glucose (8.3 mM) were investigated in isolated rat pancreatic islets. RESULTS Both the alpha- and beta-anomers of 2-deoxy-D-glucose tetra-acetate inhibited the generation of 3HOH from D-[5-3H]glucose and that of 14CO2, as well as radioactive acidic metabolites and amino acids, from D-[U-14C]glucose. They also lowered the paired ratio between D-[U-14C]glucose oxidation and D-[5-3H]glucose utilization. No significant anomeric difference could be detected, however, in these experiments. CONCLUSIONS The effects of the alpha- and beta-anomer of 2-deoxy-D-glucose tetra-acetate on the metabolism of D-glucose in isolated rat pancreatic islets reinforce the view that the insulinotropic action of monosaccharide esters involves a dual mode of action, linked to both the metabolic effects of their glucidic moiety and a direct interaction of the esters themselves with a stereospecific receptor system.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D005260 Female Females
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A Bakkali-Nadi, and M M Kadiata, and W J Malaisse
May 2004, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
A Bakkali-Nadi, and M M Kadiata, and W J Malaisse
December 2003, International journal of molecular medicine,
A Bakkali-Nadi, and M M Kadiata, and W J Malaisse
May 1976, Diabetes,
A Bakkali-Nadi, and M M Kadiata, and W J Malaisse
March 1998, Cancer letters,
A Bakkali-Nadi, and M M Kadiata, and W J Malaisse
March 1999, Cell biochemistry and function,
A Bakkali-Nadi, and M M Kadiata, and W J Malaisse
January 1983, Reproduction, nutrition, developpement,
A Bakkali-Nadi, and M M Kadiata, and W J Malaisse
November 1975, Journal of biochemistry,
A Bakkali-Nadi, and M M Kadiata, and W J Malaisse
April 2000, International journal of molecular medicine,
A Bakkali-Nadi, and M M Kadiata, and W J Malaisse
September 1997, Biochemistry and molecular biology international,
Copied contents to your clipboard!