The spectrin skeleton of newly-invaginated plasma membrane. 2000

T L Herring, and P Juranka, and J Mcnally, and H Lesiuk, and C E Morris
Loeb Health Research Institute, Ottawa Hospital, Ontario, Canada.

As a cell's shape and volume change. its surface area must re-adjust. How is the plasma membrane's spectrin skeleton implicated? For erythrocytes, cells of fixed surface area, spectrin responses to mechanical disturbances have been studied, but for more typical cells with changeable surface areas, they have not. In rapidly shrinking cells, surface membrane at an adherent substratum invaginates, forming transient vacuole-like dilations (VLDs). We exploited this readily inducible surface area perturbation to pose a simple question: is newly invaginated plasma membrane naked or is it supported by a spectrin skeleton? The spectrin skeleton was examined immunocytochemically in L6 cells (rat skeletal muscle) before and after VLD formation, using fixation in cold methanol and 4112, an antibody against beta-fodrin and beta-spectrin. 4112 was visualized by confocal fluorescence microscopy, while paired phase contrast images independently located the VLDs. To generate VLDs, cells were hypotonically swelled then reshrunk in isotonic medium. Swollen L6 cells maintained their plasma membrane (sarcolemma) spectrin skeleton. Within minutes of subsequent shrinkage, VLDs of 1-2 microm diameter invaginated at the substratum surface of myotubes. Both sarcolemma and VLDs were lined by a relatively uniform spectrin skeleton. Z-series suggested that some of the spectrin skeleton-lined sarcolemma became internalized as vacuoles.

UI MeSH Term Description Entries
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013049 Spectrin A high molecular weight (220-250 kDa) water-soluble protein which can be extracted from erythrocyte ghosts in low ionic strength buffers. The protein contains no lipids or carbohydrates, is the predominant species of peripheral erythrocyte membrane proteins, and exists as a fibrous coating on the inner, cytoplasmic surface of the membrane. alpha-Spectrin,beta-Spectrin,alpha Spectrin,beta Spectrin
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014617 Vacuoles Any spaces or cavities within a cell. They may function in digestion, storage, secretion, or excretion. Vacuole
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings

Related Publications

T L Herring, and P Juranka, and J Mcnally, and H Lesiuk, and C E Morris
January 1993, Annual review of cell biology,
T L Herring, and P Juranka, and J Mcnally, and H Lesiuk, and C E Morris
February 1989, Current opinion in cell biology,
T L Herring, and P Juranka, and J Mcnally, and H Lesiuk, and C E Morris
October 1990, Physiological reviews,
T L Herring, and P Juranka, and J Mcnally, and H Lesiuk, and C E Morris
September 2010, Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine,
T L Herring, and P Juranka, and J Mcnally, and H Lesiuk, and C E Morris
May 1989, The Journal of cell biology,
T L Herring, and P Juranka, and J Mcnally, and H Lesiuk, and C E Morris
July 2019, PLoS biology,
T L Herring, and P Juranka, and J Mcnally, and H Lesiuk, and C E Morris
August 1998, Biochimica et biophysica acta,
T L Herring, and P Juranka, and J Mcnally, and H Lesiuk, and C E Morris
January 2001, Cellular & molecular biology letters,
T L Herring, and P Juranka, and J Mcnally, and H Lesiuk, and C E Morris
May 1996, The American journal of physiology,
T L Herring, and P Juranka, and J Mcnally, and H Lesiuk, and C E Morris
January 2018, Frontiers in synaptic neuroscience,
Copied contents to your clipboard!