An alternatively spliced transcript of the rat nociceptin receptor ORL1 gene encodes a truncated receptor. 2000

G Xie, and E Ito, and K Maruyama, and C Pietruck, and M Sharma, and L Yu, and P Pierce Palmer
Department of Anesthesia, University of California, PO Box 0464, Rm S-455, 513 Parnassus Avenue, San Francisco, CA, USA.

Opioid receptor-like protein ORL1, the receptor for the neuropeptide nociceptin (also named orphanin FQ), has two alternatively spliced isoforms in the rat. This alternative splicing event is generated by retaining of intron 3, 81 bases in length, in the mRNA region encoding the second extracellular loop of ORL1. A full-length rat ORL1 receptor has 367 amino acid residues. However, as revealed by sequencing of rat ORL1 genomic DNA and cDNA, the insertion of the unspliced intron 3 brings in an in-frame stop codon and, therefore, creates a truncated open-reading frame encoding only the N-terminal half of ORL1 (from the N-terminus to an alternate extracellular tail C-terminal to the fourth transmembrane domain). The two alternatively spliced transcripts are differentially expressed in tissues. In transfected mammalian cells, the full-length ORL1 displays high-affinity and selective binding for nociceptin, and inhibits the production of cyclic AMP. In contrast, the truncated ORL1 binds nociceptin and other opioid peptides very poorly and non-selectively (affinity in micromolar range), and it does not mediate any inhibitory effects on cyclic AMP production. Apparently, this truncated ORL1 does not function as a receptor for nociceptin or other ligands tested. Such alternative splicing to create a truncated ORL1 receptor might be an endogenous mechanism to negatively regulate nociceptin/ORL1 functions.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000094942 Nociceptin Receptor A member of the opioid subfamily of the G PROTEIN-COUPLED RECEPTORS. It is the receptor for the endogenous neuropeptide nociceptin. It functions in modulating NOCICEPTION and the perception of pain. KOR-3 Protein,Kappa3-Related Opioid Receptor,MOR-C Protein,Nociceptin Receptors,OFQ Receptor,OFQ Receptors,ORL1 Receptor,ORL1 Receptors,Opiate Receptor-Like 1,Opioid Receptor-Like Protein,Opioid-Receptor-Like 1 Protein,Orphanin FQ Receptor,Orphanin FQ Receptors,Receptor, Nociceptin,Receptor, OFQ,Receptor, Orphanin FQ,Receptors, ORL1,Noci-R,1 Protein, Opioid-Receptor-Like,1, Opiate Receptor-Like,FQ Receptor, Orphanin,FQ Receptors, Orphanin,MOR C Protein,Noci R,Opioid Receptor Like 1 Protein,Protein, KOR-3,Protein, MOR-C,Protein, Opioid Receptor-Like,Protein, Opioid-Receptor-Like 1,Receptor, Kappa3-Related Opioid,Receptor-Like 1, Opiate,Receptor-Like Protein, Opioid,Receptors, Nociceptin,Receptors, Orphanin FQ
D000097629 Nociceptin A pronociceptive peptide that acts as a specific endogenous agonist to the NOCICEPTIN RECEPTOR. N-OFQ Peptide,Nociceptin-Orphanin FQ,Orphanin FQ

Related Publications

G Xie, and E Ito, and K Maruyama, and C Pietruck, and M Sharma, and L Yu, and P Pierce Palmer
March 1998, Gene,
G Xie, and E Ito, and K Maruyama, and C Pietruck, and M Sharma, and L Yu, and P Pierce Palmer
June 1990, Molecular and cellular biology,
G Xie, and E Ito, and K Maruyama, and C Pietruck, and M Sharma, and L Yu, and P Pierce Palmer
April 1994, Nihon rinsho. Japanese journal of clinical medicine,
G Xie, and E Ito, and K Maruyama, and C Pietruck, and M Sharma, and L Yu, and P Pierce Palmer
November 2018, Neurobiology of aging,
G Xie, and E Ito, and K Maruyama, and C Pietruck, and M Sharma, and L Yu, and P Pierce Palmer
February 2006, Cancer letters,
G Xie, and E Ito, and K Maruyama, and C Pietruck, and M Sharma, and L Yu, and P Pierce Palmer
November 2010, The Journal of biological chemistry,
G Xie, and E Ito, and K Maruyama, and C Pietruck, and M Sharma, and L Yu, and P Pierce Palmer
July 1999, Biochemical and biophysical research communications,
G Xie, and E Ito, and K Maruyama, and C Pietruck, and M Sharma, and L Yu, and P Pierce Palmer
July 2010, Plant cell reports,
G Xie, and E Ito, and K Maruyama, and C Pietruck, and M Sharma, and L Yu, and P Pierce Palmer
July 1999, Molecular cell biology research communications : MCBRC,
G Xie, and E Ito, and K Maruyama, and C Pietruck, and M Sharma, and L Yu, and P Pierce Palmer
November 1992, Biochemical and biophysical research communications,
Copied contents to your clipboard!