Taurine blocks spontaneous cone contraction but not horizontal cell dark suppression in isolated goldfish retina. 2000

W H Baldridge, and P McLure, and D V Pow
Laboratory for Retina and Optic Nerve Research, Departments of Anatomy and Neurobiology and of Ophthalmology, Dalhousie University, Halifax, Nova Scotia, Canada. wbaldrid@is.dal.ca

The objective of this study was to investigate the effects of taurine on cone retinomotor movements and the responses of cone-driven horizontal cells in dark-adapted teleost retina. In isolated goldfish retina preparations maintained in the dark, cones spontaneously contracted, and the responses of horizontal cells were suppressed. Addition of 5 mM taurine to the physiological solution blocked the spontaneous contraction of cones in the dark but did not block the dark-suppression of horizontal cell responses. These results indicate that the mechanism that leads to horizontal cell dark suppression is not sensitive to taurine. Although both cone retinomotor position and horizontal cell responsiveness are known to be modulated by dopamine, the present results do not support the hypothesis that taurine inhibits dopamine release in the dark because only spontaneous cone contraction was affected by taurine. These results also indicate that spontaneous cone contraction in the dark is not the cause of horizontal cell dark suppression because, in the presence of taurine, cones were elongated yet horizontal cell responses were still suppressed. Consequently, these results make it clear that horizontal cell dark suppression is not an artifact produced by incubating isolated teleost retina preparations in taurine-free physiological solution.

UI MeSH Term Description Entries
D007552 Isotonic Solutions Solutions having the same osmotic pressure as blood serum, or another solution with which they are compared. (From Grant & Hackh's Chemical Dictionary, 5th ed & Dorland, 28th ed) Solutions, Isotonic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000077331 Ringer's Solution An isotonic solution; the base contains SODIUM CHLORIDE; POTASSIUM CHLORIDE; and CALCIUM CHLORIDE. Other chemicals, such as SODIUM BICARBONATE or acetate salts may be added, as needed for pH buffering, or as an energy source. Ringers Solution,Ringer Solution
D000221 Adaptation, Ocular The adjustment of the eye to variations in the intensity of light. Light adaptation is the adjustment of the eye when the light threshold is increased; DARK ADAPTATION when the light is greatly reduced. (From Cline et al., Dictionary of Visual Science, 4th ed) Light Adaptation,Adaptation, Light,Adaptations, Light,Adaptations, Ocular,Light Adaptations,Ocular Adaptation,Ocular Adaptations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013654 Taurine A conditionally essential nutrient, important during mammalian development. It is present in milk but is isolated mostly from ox bile and strongly conjugates bile acids. Taufon,Tauphon,Taurine Hydrochloride,Taurine Zinc Salt (2:1),Taurine, Monopotassium Salt

Related Publications

W H Baldridge, and P McLure, and D V Pow
February 1987, The Journal of comparative neurology,
W H Baldridge, and P McLure, and D V Pow
December 1975, Science (New York, N.Y.),
W H Baldridge, and P McLure, and D V Pow
January 2019, PloS one,
W H Baldridge, and P McLure, and D V Pow
June 1979, Science (New York, N.Y.),
W H Baldridge, and P McLure, and D V Pow
September 2000, Journal of neurophysiology,
W H Baldridge, and P McLure, and D V Pow
February 1975, The Journal of comparative neurology,
W H Baldridge, and P McLure, and D V Pow
December 1981, The Journal of physiology,
W H Baldridge, and P McLure, and D V Pow
December 1983, The Journal of physiology,
W H Baldridge, and P McLure, and D V Pow
January 1995, Visual neuroscience,
Copied contents to your clipboard!