Central circuitry in the jellyfish Aglantha digitale. III. The rootlet and pacemaker systems. 2000

G O Mackie, and R W Meech
Biology Department, University of Victoria, British Columbia, Canada. mackie@uvic.ca

Tactile stimulation of the subumbrella of Aglantha digitale was found to evoke an escape swimming response similar to that evoked by stimulation of the outer surfaces of the margin but that does not involve the ring giant axon. Evidence is presented that conduction around the margin takes place via an interconnected system of rootlet interneurones. Confocal microscopy of carboxyfluorescein-filled axons showed that the rootlet neurones run out from the bases of the motor giant axons within the inner nerve ring and come into close contact with those of the neighbouring motor giant axons on either side. Transmission between the rootlet neurones has the properties of chemical synaptic transmission. A distinct type of fast excitatory postsynaptic potential (rootlet PSP) was recorded in motor giant axons following stimulation of nearby axons in 3-5 mmol l(-)(1) Mn(2+), which lowered the PSP below spike threshold. Immune labelling with anti-syntaxin 1 showed structures tentatively identified as synapses in the inner nerve ring, including some on the rootlet neurones. Neuromuscular junctions were not labelled. A secondary consequence of stimulating motor giant axons was the triggering of events in the pacemaker system. Triggering was blocked in 105 mmol l(-)(1) Mg(2+), indicating a synaptic link. Activity in the pacemaker system led indirectly to tentacle contractions (as described in earlier papers in this series), but the contractions were not as sudden or as violent as those seen when escape swimming was mediated by the ring giant axon. Events triggered in the pacemaker system fed back into the motor giants, producing postsynaptic potentials that appeared as humps in the spike after-potential. The conduction velocity of events propagating in the relay system was increased when the rootlet pathway was simultaneously excited (piggyback effect). With the addition of the rootlet pathway, the number of identified systems concerned with locomotion, feeding and tentacle contractions comes to fourteen, and the list is probably nearly complete.

UI MeSH Term Description Entries
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D014110 Touch Sensation of making physical contact with objects, animate or inanimate. Tactile stimuli are detected by MECHANORECEPTORS in the skin and mucous membranes. Tactile Sense,Sense of Touch,Taction,Sense, Tactile,Senses, Tactile,Tactile Senses,Tactions,Touch Sense,Touch Senses
D037401 Scyphozoa The class of true jellyfish, in the phylum CNIDARIA. They are mostly free-swimming marine organisms that go through five stages in their life cycle and exhibit two body forms: polyp and medusa. Aurelia aurita,Chrysaora fuscescens,Jellyfish, Moon,Jellyfish, True,Moon Jellyfish,Sea Nettle, West Coast,Moon Jelly,Sea Nettle, Pacific,Aurelia auritas,Chrysaora fuscescen,Jellies, Moon,Jelly, Moon,Jellyfishs, Moon,Jellyfishs, True,Moon Jellies,Moon Jellyfishs,Nettle, Pacific Sea,Nettles, Pacific Sea,Pacific Sea Nettle,Pacific Sea Nettles,Scyphozoas,Sea Nettles, Pacific,True Jellyfish,True Jellyfishs,auritas, Aurelia,fuscescens, Chrysaora

Related Publications

G O Mackie, and R W Meech
April 1978, Cell and tissue research,
G O Mackie, and R W Meech
January 1983, Cell and tissue research,
G O Mackie, and R W Meech
February 1980, The Journal of experimental biology,
G O Mackie, and R W Meech
December 2009, The Journal of experimental biology,
G O Mackie, and R W Meech
April 2011, The Journal of experimental biology,
G O Mackie, and R W Meech
November 2022, Hearing research,
Copied contents to your clipboard!