A 12(S)-hydroxyeicosatetraenoic acid receptor interacts with steroid receptor coactivator-1. 2000

Y Kurahashi, and H Herbertsson, and M Söderström, and M G Rosenfeld, and S Hammarström
Department of Biomedicine and Surgery, Division of Cell Biology, Linköping University, S-581 85 Linköping, Sweden.

Lewis lung carcinoma cells contain specific high-affinity binding sites for the eicosanoid 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid [12(S)-HETE]. These binding sites have a cytosolic/nuclear localization and contain the heat shock proteins hsp70 and hsp90 as components of a high molecular weight cytosolic binding complex. The ligand binding subunit of this complex is a protein with an apparent molecular mass of approximately 50 kDa as judged by gel permeation chromatography. In this report, we present data showing that the 50-kDa 12(S)-HETE binding protein interacts as a homodimer with steroid receptor coactivator-1 (SRC-1) in the presence of 12(S)-HETE. Two putative interaction domains were mapped. One of these (amino acids 701-781) was within the nuclear receptor interaction domain in SRC-1 required for binding of various steroid and thyroid hormone receptors. It contains the most C-terminal of the three copies of LXXLL motif present in the nuclear receptor interaction domain. The second interaction domain was present in the N-terminal part of SRC-1 (amino acids 1-221). This region has two LXXLL motifs, one does not bind and the other binds only weakly to steroid and thyroid hormone receptors. Glutathione S-transferase (GST) pulldown experiments and far Western analyses demonstrated that the N-terminal region of SRC-1 (amino acids 1-212) alone does not bind the 50-kDa 12(S)-HETE binding protein, whereas GST/DeltaSRC-1(1-1138) ligand-dependently pulled down a protein of approximately 50 kDa in size. Our results suggest that the 50-kDa 12(S)-HETE binding protein is a receptor that may signal through interaction with a nuclear receptor coactivator protein.

UI MeSH Term Description Entries
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D011232 Chemical Precipitation The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution. Precipitation, Chemical
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

Y Kurahashi, and H Herbertsson, and M Söderström, and M G Rosenfeld, and S Hammarström
October 2008, Endocrinology,
Y Kurahashi, and H Herbertsson, and M Söderström, and M G Rosenfeld, and S Hammarström
February 1998, Molecular endocrinology (Baltimore, Md.),
Y Kurahashi, and H Herbertsson, and M Söderström, and M G Rosenfeld, and S Hammarström
March 1991, Agents and actions,
Y Kurahashi, and H Herbertsson, and M Söderström, and M G Rosenfeld, and S Hammarström
June 2018, Bioscience reports,
Y Kurahashi, and H Herbertsson, and M Söderström, and M G Rosenfeld, and S Hammarström
October 1998, The Journal of biological chemistry,
Y Kurahashi, and H Herbertsson, and M Söderström, and M G Rosenfeld, and S Hammarström
May 1998, The Journal of biological chemistry,
Y Kurahashi, and H Herbertsson, and M Söderström, and M G Rosenfeld, and S Hammarström
November 1996, Biochemical and biophysical research communications,
Y Kurahashi, and H Herbertsson, and M Söderström, and M G Rosenfeld, and S Hammarström
September 2011, The Journal of biological chemistry,
Y Kurahashi, and H Herbertsson, and M Söderström, and M G Rosenfeld, and S Hammarström
September 1997, Nature,
Y Kurahashi, and H Herbertsson, and M Söderström, and M G Rosenfeld, and S Hammarström
May 1992, Experimental eye research,
Copied contents to your clipboard!