Morphology and patterns of protein synthesis during sporulation of Bacillus subtilis Eryr spo(Ts) mutants. 1979

R C Goldman, and D J Tipper

Erythromycin-resistant (Eryr) mutants of Bacillus subtilis 168 fail to sporulate at high temperature (47 degrees C) but sporulate normally at 30 to 35 degrees C. They also fail to sporulate at any temperature in the presence of 2.5 micrograms of erythromycin per ml. Neither of these nonpermissive conditions appears to affect vegetative growth, and the periods of sensitivity to both conditions extend from 40 to 90% of the sporulation period. At 47 degrees C, net incorporation of methionine and phenylalanine in postexponential Eryr and 168 cells was similar, and fractionation of the labeled products by polyacrylamide gel electrophoresis gave patterns in which many of the bands produced by mutant and parental cells coincided. However, distinct differences were seen, and since no spore-specific morphogenesis occurred in the Eryr cells at 47 degrees C, a selective defect in spore gene expression was inferred. At 35 degrees C plus erythromycin, spore morphogenesis proceeded normally until forespores were produced and then ceased, coincident with a marked increase in sensitivity of total protein synthesis to erythromycin. The effects seem to be nonspecific, therefore, and may indicate a change in cell permeability or ribosomal sensitivity to erythromycin.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004917 Erythromycin A bacteriostatic antibiotic macrolide produced by Streptomyces erythreus. Erythromycin A is considered its major active component. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erycette,Erymax,Erythromycin A,Erythromycin C,Erythromycin Lactate,Erythromycin Phosphate,Ilotycin,T-Stat,Lactate, Erythromycin,Phosphate, Erythromycin,T Stat,TStat
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013171 Spores, Bacterial Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium. Bacterial Spores,Bacterial Spore,Spore, Bacterial
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

R C Goldman, and D J Tipper
February 2014, Microbiology spectrum,
R C Goldman, and D J Tipper
February 1979, Journal of general microbiology,
R C Goldman, and D J Tipper
June 1973, Journal of molecular biology,
R C Goldman, and D J Tipper
May 1982, Journal of bacteriology,
R C Goldman, and D J Tipper
January 1966, Cold Spring Harbor symposia on quantitative biology,
R C Goldman, and D J Tipper
October 1983, Journal of general microbiology,
R C Goldman, and D J Tipper
January 1987, Folia microbiologica,
R C Goldman, and D J Tipper
December 1979, Journal of bacteriology,
R C Goldman, and D J Tipper
April 1975, Nature,
Copied contents to your clipboard!