Factors affecting newborn bone mineral content: in utero effects on newborn bone mineralization. 2000

R Namgung, and R C Tsang
Yonsei University College of Medicine, Department of Pediatrics, 134 Shinochon-Dong, Sudaemoon-Ku, Seoul 120-752, Korea.

Several factors have been found recently to have a significant impact on newborn bone mineral content (BMC) and developing fetal bone. Recently we showed that maternal vitamin D deficiency may affect fetal bone mineralization. Korean winter-born newborn infants had extremely low serum 25-hydroxyvitamin D (25-OHD), high serum cross-linked carboxy-terminal telopeptide of type I collagen (ICTP; a bone resorption marker), and markedly lower (8 %) total body BMC than summer-born newborn infants. Infant total body BMC was positively correlated with cord serum 25-OHD and inversely correlated with ICTP, which was also negatively correlated with vitamin D status. In three separate studies on North American neonates we found markedly lower (8-12 %) BMC in summer newborn infants compared with winter newborn infants, the opposite of the findings for Korean neonates. The major reason for the conflicting BMC results might be the markedly different maternal vitamin D status of the North American and Korean subjects. Recently, we found evidence of decreased bone formation rates in infants who were small-for-gestational age (SGA) compared with infants who were appropriate-for-gestational age; we reported reduced BMC, cord serum osteocalcin (a marker of bone formation) and 1,25-dihydroxyvitamin D (the active metabolite of vitamin D), but no alterations in indices of fetal bone collagen metabolism. In theory, reduced utero-placental blood flow in SGA infants may result in reduced transplacental mineral supply and reduced fetal bone formation. Infants of diabetic mothers (IDM) have low BMC at birth, and infant BMC correlated inversely with poor control of diabetes in the mother, specifically first trimester maternal mean capillary blood glucose concentration, implying that factors early in pregnancy might have an effect on fetal BMC. The low BMC in IDM may be related to the decreased transplacental mineral transfer. Cord serum ICTP concentrations were higher in IDM than in control subjects, implying increased intrauterine bone resorption. BMC is consistently increased with increasing body weight and length in infants. Race and gender differences in BMC appear in early life, but not at birth. Ethanol consumption and smoking by the mother during pregnancy affect fetal skeletal development.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007236 Infant, Small for Gestational Age An infant having a birth weight lower than expected for its gestational age.
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011254 Pregnancy in Diabetics The state of PREGNANCY in women with DIABETES MELLITUS. This does not include either symptomatic diabetes or GLUCOSE INTOLERANCE induced by pregnancy (DIABETES, GESTATIONAL) which resolves at the end of pregnancy. Pregnancy in Diabetes,Pregnancy in Diabete,Pregnancy in Diabetic
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012621 Seasons Divisions of the year according to some regularly recurrent phenomena usually astronomical or climatic. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Seasonal Variation,Season,Seasonal Variations,Variation, Seasonal,Variations, Seasonal

Related Publications

R Namgung, and R C Tsang
February 1977, Acta endocrinologica,
R Namgung, and R C Tsang
January 2021, Frontiers in pediatrics,
R Namgung, and R C Tsang
July 2009, Rheumatology international,
R Namgung, and R C Tsang
January 1971, The American journal of physiology,
R Namgung, and R C Tsang
March 2018, Clinics in perinatology,
R Namgung, and R C Tsang
January 2015, Archives of osteoporosis,
R Namgung, and R C Tsang
January 2003, Therapie,
R Namgung, and R C Tsang
March 1992, The New Zealand medical journal,
R Namgung, and R C Tsang
June 1999, Annals of nuclear medicine,
Copied contents to your clipboard!