Thyrotropin-releasing hormone is not required for thyrotropin secretion in the perinatal rat. 1979

T Theodoropoulos, and L E Braverman, and A G Vagenakis

To determine the role of thyrotropin-releasing hormone (TRH) in the regulation of thyroid-stimulating hormone (TSH) secretion in the perinatal period, a physiological approach of neutralizing circulating TRH in the fetal and early neonatal rat was employed. TRH-antiserum (TRH-AS) raised in rabbits and administered daily to low iodine-propylthiouracil (LID-PTU)-fed pregnant rats from days 12 to 19 of gestation markedly impaired the rise in serum TSH to LID-PTU when compared with normal rabbit serum-treated controls. In contrast, fetal serum TSH was unaffected by TRH-AS. The binding capacity of TRH-AS in the fetal serum (111 ng/ml) far exceeded circulating TRH in the fetus. Similarly, acute TRH-AS administration to the pregnant rat fed LID-PTU markedly decreased the serum TSH concentration in the mother, but not in the fetus, 60 min after TRH-AS administration. Chronic TRH-AS administration to neonatal rats whose nursing mothers were fed LID-PTU was in-effective in decreasing the elevated serum TSH in the neonate through day 8 of life, whereas a slight but significant decrease in serum TSH was observed on day 10. Chronic daily TRH-AS administration to neonatal rats through day 10 of life had no effect on the later development of the hypothalamic-pituitary-thyroid axis. These findings suggest that TRH does not participate in TSH regulation during the perinatal life in the rat and that thyroid hormones are probably the main regulators of TSH secretion during this period. Placental TRH is not important in regulating TSH secretion in the fetal rat. Furthermore, TRH "deprivation" during neonatal life does not prevent normal later development of the hypothalamic-pituitary-thyroid axis.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008431 Maternal-Fetal Exchange Exchange of substances between the maternal blood and the fetal blood at the PLACENTA via PLACENTAL CIRCULATION. The placental barrier excludes microbial or viral transmission. Transplacental Exposure,Exchange, Maternal-Fetal,Exposure, Transplacental,Maternal Fetal Exchange
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011441 Propylthiouracil A thiourea antithyroid agent. Propythiouracil inhibits the synthesis of thyroxine and inhibits the peripheral conversion of throxine to tri-iodothyronine. It is used in the treatment of hyperthyroidism. (From Martindale, The Extra Pharmacopeoia, 30th ed, p534) 6-Propyl-2-Thiouracil,6 Propyl 2 Thiouracil
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

T Theodoropoulos, and L E Braverman, and A G Vagenakis
November 1996, The American journal of physiology,
T Theodoropoulos, and L E Braverman, and A G Vagenakis
March 1987, The Journal of laboratory and clinical medicine,
T Theodoropoulos, and L E Braverman, and A G Vagenakis
October 1978, Life sciences,
T Theodoropoulos, and L E Braverman, and A G Vagenakis
January 1973, Annual review of medicine,
T Theodoropoulos, and L E Braverman, and A G Vagenakis
April 1983, Cell calcium,
T Theodoropoulos, and L E Braverman, and A G Vagenakis
May 1977, Endocrinology,
T Theodoropoulos, and L E Braverman, and A G Vagenakis
July 1984, Endocrinology,
T Theodoropoulos, and L E Braverman, and A G Vagenakis
October 1985, Endocrinology,
T Theodoropoulos, and L E Braverman, and A G Vagenakis
January 1974, Neuroendocrinology,
Copied contents to your clipboard!