Inhibition of gastric mucin synthesis by Helicobacter pylori. 2000

J C Byrd, and C K Yunker, and Q S Xu, and L R Sternberg, and R S Bresalier
Gastrointestinal Cancer Research Laboratory, Henry Ford Health Sciences Center, Detroit, Michigan, USA.

OBJECTIVE Mucins are high-molecular-weight glycoproteins that protect the gastric epithelium. Previous data suggested that gastric surface-type mucin is decreased in Helicobacter pylori-infected patients and restored after eradication of the infection. Our aim was to determine the effect of H. pylori on mucin synthesis in cultured gastric epithelial cells. METHODS Mucin synthesis was measured by labeling with [(3)H]glucosamine and size-exclusion chromatography. Expression of MUC5AC and MUC1 mucin protein antigens was quantitated by Western blot analysis. RESULTS Mucin synthesis was inhibited more than 80% when KATO III cells were incubated with H. pylori, with no effect on mucin secretion or degradation. Inhibition was rapid (4 hours), partially reversible, dependent on concentration of bacteria, and associated with the insoluble membrane fraction. H. pylori decreased levels of MUC5AC and MUC1 mucins. MUC1 inhibition was half-maximal by 4 hours and partially reversed by 24 hours, but the decrease in MUC5AC was less rapid and not reversible within 24 hours. CONCLUSIONS H. pylori inhibits total mucin synthesis in vitro and decreases the expression of MUC5AC and MUC1. A decrease in gastric mucin synthesis in vivo may disrupt the protective surface mucin layer.

UI MeSH Term Description Entries
D009077 Mucins High molecular weight mucoproteins that protect the surface of EPITHELIAL CELLS by providing a barrier to particulate matter and microorganisms. Membrane-anchored mucins may have additional roles concerned with protein interactions at the cell surface. Mucin
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013274 Stomach Neoplasms Tumors or cancer of the STOMACH. Cancer of Stomach,Gastric Cancer,Gastric Neoplasms,Stomach Cancer,Cancer of the Stomach,Gastric Cancer, Familial Diffuse,Neoplasms, Gastric,Neoplasms, Stomach,Cancer, Gastric,Cancer, Stomach,Cancers, Gastric,Cancers, Stomach,Gastric Cancers,Gastric Neoplasm,Neoplasm, Gastric,Neoplasm, Stomach,Stomach Cancers,Stomach Neoplasm
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D016480 Helicobacter pylori A spiral bacterium active as a human gastric pathogen. It is a gram-negative, urease-positive, curved or slightly spiral organism initially isolated in 1982 from patients with lesions of gastritis or peptic ulcers in Western Australia. Helicobacter pylori was originally classified in the genus CAMPYLOBACTER, but RNA sequencing, cellular fatty acid profiles, growth patterns, and other taxonomic characteristics indicate that the micro-organism should be included in the genus HELICOBACTER. It has been officially transferred to Helicobacter gen. nov. (see Int J Syst Bacteriol 1989 Oct;39(4):297-405). Campylobacter pylori,Campylobacter pylori subsp. pylori,Campylobacter pyloridis,Helicobacter nemestrinae

Related Publications

J C Byrd, and C K Yunker, and Q S Xu, and L R Sternberg, and R S Bresalier
August 2000, World journal of gastroenterology,
J C Byrd, and C K Yunker, and Q S Xu, and L R Sternberg, and R S Bresalier
July 1991, Biochemistry international,
J C Byrd, and C K Yunker, and Q S Xu, and L R Sternberg, and R S Bresalier
December 1993, Biochemistry and molecular biology international,
J C Byrd, and C K Yunker, and Q S Xu, and L R Sternberg, and R S Bresalier
September 1994, General pharmacology,
J C Byrd, and C K Yunker, and Q S Xu, and L R Sternberg, and R S Bresalier
January 1995, Scandinavian journal of gastroenterology. Supplement,
J C Byrd, and C K Yunker, and Q S Xu, and L R Sternberg, and R S Bresalier
June 2000, Journal of clinical microbiology,
J C Byrd, and C K Yunker, and Q S Xu, and L R Sternberg, and R S Bresalier
January 2003, Hepato-gastroenterology,
J C Byrd, and C K Yunker, and Q S Xu, and L R Sternberg, and R S Bresalier
August 1992, Biochemistry international,
J C Byrd, and C K Yunker, and Q S Xu, and L R Sternberg, and R S Bresalier
March 1992, Biochemical and biophysical research communications,
J C Byrd, and C K Yunker, and Q S Xu, and L R Sternberg, and R S Bresalier
January 2004, IUBMB life,
Copied contents to your clipboard!