Developmental changes in mitochondrial activity and energy metabolism in fetal and neonatal rat brain. 2000

A Nakai, and Y Taniuchi, and H Asakura, and A Oya, and A Yokota, and T Koshino, and T Araki
Department of Obstetrics and Gynecology, Tama Nagayama Hospital, Nippon Medical School, 1-7-1 Nagayama, Tama-shi, 206-8512, Tokyo, Japan. Nakai.Akihito/obgy@nms.ac.jp

Experiments were undertaken to investigate mitochondrial activity and energy metabolism in the developing rat brain from the late fetal stage to the neonatal stage. Samples of cerebral cortical tissue were obtained from fetuses at 14, 16, 18, and 20 days of gestation, and from pups at 1 h, 1 day and 7 days after birth. Mitochondrial respiration was measured polarographically using homogenates. Fetal and neonatal brains were frozen in situ and fluorometric enzymatic techniques were used for the analysis of ATP, ADP, AMP, and lactate. In the fetal brain, there was a gradual increase in stimulated (+ADP) and uncoupled respiratory rates using glutamate and malate as substrates, from 14 days to 20 days of gestation, together with a moderate increase in ATP concentration and in the sum total of adenine nucleotides, and a significant decrease in lactate. Since non-stimulated (-ADP) respiratory rates did not change with increasing gestational age, the respiratory control ratio appeared to increase over the same period. An increase in mitochondrial activity was more pronounced immediately after birth, together with a marked increase in ATP concentration and in the sum total of adenine nucleotides. The highest rate of mitochondrial respiration was observed in 1-hour-old pups. These results indicate that, in the rat brain, there is maturation of oxidative metabolism in mitochondria that is initiated in late gestation. Acceleration in mitochondrial respiration occurs immediately after birth in order to maintain high-energy phosphate levels, and this may be crucial for the successful outcome of the newborn.

UI MeSH Term Description Entries
D008293 Malates Derivatives of malic acid (the structural formula: (COO-)2CH2CHOH), including its salts and esters.
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005260 Female Females
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Nakai, and Y Taniuchi, and H Asakura, and A Oya, and A Yokota, and T Koshino, and T Araki
January 1978, Bulletin de l'Academie polonaise des sciences. Serie des sciences biologiques,
A Nakai, and Y Taniuchi, and H Asakura, and A Oya, and A Yokota, and T Koshino, and T Araki
May 1977, The Biochemical journal,
A Nakai, and Y Taniuchi, and H Asakura, and A Oya, and A Yokota, and T Koshino, and T Araki
August 1995, Biochemical Society transactions,
A Nakai, and Y Taniuchi, and H Asakura, and A Oya, and A Yokota, and T Koshino, and T Araki
September 2003, Metabolic brain disease,
A Nakai, and Y Taniuchi, and H Asakura, and A Oya, and A Yokota, and T Koshino, and T Araki
March 1983, The American journal of physiology,
A Nakai, and Y Taniuchi, and H Asakura, and A Oya, and A Yokota, and T Koshino, and T Araki
March 1972, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
A Nakai, and Y Taniuchi, and H Asakura, and A Oya, and A Yokota, and T Koshino, and T Araki
May 1976, The American journal of physiology,
A Nakai, and Y Taniuchi, and H Asakura, and A Oya, and A Yokota, and T Koshino, and T Araki
December 1982, Journal of neurochemistry,
A Nakai, and Y Taniuchi, and H Asakura, and A Oya, and A Yokota, and T Koshino, and T Araki
June 1995, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A Nakai, and Y Taniuchi, and H Asakura, and A Oya, and A Yokota, and T Koshino, and T Araki
May 1987, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!