Radiation inactivation of sperm specific lactate dehydrogenase-C4 (LDH-C4) has been studied and compared with the somatic LDH in aqueous solution. D37 of C isozyme was 470 Gy and that of B isozyme was 520 Gy. Semi-log plots of log N/No versus dose suggested that the inactivation of two LDH isozymes in presence of normal saline follows a single hit kinetics. Target molecular weight calculated by radiation analysis was found as 1.52 x 10(5) gm/mole for LDH-C4 and 1.38 x 10(5) gm/mole for LDH-B4. SDS-PAGE of irradiated enzymes showed a band of 35 kDa but did not indicate the presence of any other extra band, when compared with sham-irradiated enzymes. Chemical kinetics of residual activity following irradiation at D37 showed decrease in Vmax with coenzymes and primary substrates. However, decrease in Km was seen with pyruvate as increasing substrate. Nevertheless, K did not change when NAD+ was the leading substrate for LDH-B4 or LDH-C4. A hyperchromicity in intrinsic fluorescence and a blue shift in lambdamax over sham-irradiated LDH-C4 revealed the exposure of buried tryptophan residues to the surface after radiation inactivation. Results suggest that inspite of presence of variant amino acids, the conformations of two isozymes are stabilized by similar forces which behave in a similar way for radiation inactivation in aqueous phase.