Acetylation of histones and transcription-related factors. 2000

D E Sterner, and S L Berger
The Wistar Institute, Philadelphia, Pennsylvania 19104, USA.

The state of chromatin (the packaging of DNA in eukaryotes) has long been recognized to have major effects on levels of gene expression, and numerous chromatin-altering strategies-including ATP-dependent remodeling and histone modification-are employed in the cell to bring about transcriptional regulation. Of these, histone acetylation is one of the best characterized, as recent years have seen the identification and further study of many histone acetyltransferase (HAT) proteins and their associated complexes. Interestingly, most of these proteins were previously shown to have coactivator or other transcription-related functions. Confirmed and putative HAT proteins have been identified from various organisms from yeast to humans, and they include Gcn5-related N-acetyltransferase (GNAT) superfamily members Gcn5, PCAF, Elp3, Hpa2, and Hat1: MYST proteins Sas2, Sas3, Esa1, MOF, Tip60, MOZ, MORF, and HBO1; global coactivators p300 and CREB-binding protein; nuclear receptor coactivators SRC-1, ACTR, and TIF2; TATA-binding protein-associated factor TAF(II)250 and its homologs; and subunits of RNA polymerase III general factor TFIIIC. The acetylation and transcriptional functions of these HATs and the native complexes containing them (such as yeast SAGA, NuA4, and possibly analogous human complexes) are discussed. In addition, some of these HATs are also known to modify certain nonhistone transcription-related proteins, including high-mobility-group chromatin proteins, activators such as p53, coactivators, and general factors. Thus, we also detail these known factor acetyltransferase (FAT) substrates and the demonstrated or potential roles of their acetylation in transcriptional processes.

UI MeSH Term Description Entries
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D006609 High Mobility Group Proteins A family of low-molecular weight, non-histone proteins found in chromatin. HMG Proteins,Calf Thymus Chromatin Protein HMG,High Mobility Group Chromosomal Proteins
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015696 Gene Products, tat Trans-acting transcription factors produced by retroviruses such as HIV. They are nuclear proteins whose expression is required for viral replication. The tat protein stimulates LONG TERMINAL REPEAT-driven RNA synthesis for both viral regulatory and viral structural proteins. Tat stands for trans-activation of transcription. tat Gene Products,tat Protein,Gene Product, tat,tat Gene Product
D051548 Histone Acetyltransferases Enzymes that catalyze acyl group transfer from ACETYL-CoA to HISTONES forming CoA and acetyl-histones. Histone Acetylase,Histone Acetyltransferase,Acetylase, Histone,Acetyltransferase, Histone,Acetyltransferases, Histone

Related Publications

D E Sterner, and S L Berger
January 1975, Biokhimiia (Moscow, Russia),
D E Sterner, and S L Berger
April 1982, Molecular and cellular biochemistry,
D E Sterner, and S L Berger
August 1999, International journal of oncology,
D E Sterner, and S L Berger
September 2011, Yi chuan = Hereditas,
D E Sterner, and S L Berger
February 1995, Proceedings of the National Academy of Sciences of the United States of America,
D E Sterner, and S L Berger
June 1975, Archives of biochemistry and biophysics,
D E Sterner, and S L Berger
November 1980, European journal of biochemistry,
Copied contents to your clipboard!