G-protein coupling of mu-opioid receptors (OP3): elevated basal signalling activity. 2000

N T Burford, and D Wang, and W Sadée
Department of Biopharmaceutical Sciences and Pharmaceutical Chemistry, School of Pharmacy, Box 0446, University of California, San Francisco, CA 94143-0446, USA.

To determine mu-opioid receptor (OP(3)) signalling activity, guanosine 5'-[gamma-[(35)S]thio]triphosphate (GTP[(35)S]) binding to G-proteins was measured in the membranes of human embryonic kidney cells (HEK-293) transfected with mu-opioid receptor (HEK-mu). GTP[(35)S] binding to HEK-mu membranes was significantly elevated compared with HEK-293 control membranes (without OP(3)), and this was abolished by pertussis-toxin pretreatment. The irreversible antagonist beta-chlornaltrexamine (beta-CNA) dose-dependently decreased elevated basal G-protein coupling of HEK-mu to control levels in cells devoid of OP(3). This characterizes beta-CNA as an inverse OP(3) agonist. Immunoprecipitation of solubilized G-proteins with G(i3)alpha antisera demonstrated that basal GTP[(35)S] binding to G(i3)alpha was also substantially elevated in HEK-mu membranes over the control, whereas G(i3)alpha protein levels were unchanged. Basal GTP[(35)S] binding to G(i1)alpha/G(i2)alpha and G(o)alpha was also increased twofold in HEK-mu membranes over the control. Morphine further increased coupling to each of these Galpha proteins with similar potency, but not to G(q)/(11)alpha or G(s)alpha. These results indicate that the wild-type OP(3) can couple constitutively to endogenously expressed G(i3)alpha, G(i1)alpha/G(i2)alpha and G(o)alpha subunits of G-proteins in HEK-293 cells.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings

Related Publications

N T Burford, and D Wang, and W Sadée
April 2003, European journal of pharmacology,
N T Burford, and D Wang, and W Sadée
September 2001, The Journal of biological chemistry,
N T Burford, and D Wang, and W Sadée
April 2000, Journal of neurochemistry,
N T Burford, and D Wang, and W Sadée
July 1999, The Journal of biological chemistry,
N T Burford, and D Wang, and W Sadée
August 1996, Cellular signalling,
N T Burford, and D Wang, and W Sadée
June 2017, The Journal of biological chemistry,
N T Burford, and D Wang, and W Sadée
April 1999, European journal of biochemistry,
Copied contents to your clipboard!