Cholinergic modulation of synaptic transmission and plasticity in entorhinal cortex and hippocampus of the rat. 2000

S H Yun, and M Y Cheong, and I Mook-Jung, and K Huh, and C Lee, and M W Jung
Neuroscience Laboratory, Institute for Medical Sciences, Ajou University School of Medicine, 442-721, Suwon, South Korea.

Effects of cholinergic agents on synaptic transmission and plasticity were examined in entorhinal cortex and hippocampus. Bath application of carbachol (0.25-0.75 microM) induced transient depression of field potential responses in all cases tested (24/24 in layer III of medial entorhinal cortex slices and 24/24 in CA1 of hippocampal slices; 11.0+/-1.9% and 7.8+/-2.5%, respectively) and long-lasting potentiation in some cases (4/24 in entorhinal cortex and 12/24 in hippocampus; 33.7+/-3.7% and 32.1+/-9.9%, respectively, in successful cases). Carbachol (0.5 microM) induced transient depression, but not long-lasting potentiation, of N-methyl-D-aspartate receptor-mediated responses in entorhinal cortex. At 5 microM, carbachol induced transient depression only (55. 9+/-4.7% in entorhinal cortex and 41.4+/-2.9% in hippocampus), which was blocked by atropine. Paired-pulse facilitation was not altered during carbachol-induced potentiation but enhanced during carbachol-induced depression. These results suggest that the underlying mechanisms of carbachol-induced depression and potentiation are decreased transmitter release and selective enhancement of non-N-methyl-D-aspartate receptor-mediated responses, respectively. Long-term potentiation could be induced in the presence of 10 microM atropine by theta burst stimulation. The magnitude was significantly lower (15.2+/-5.2%, n=9) compared with control (37.2+/-6.1%, n=8) in entorhinal cortex, however. These results demonstrate similar, but not identical, cholinergic modulation of synaptic transmission and plasticity in entorhinal cortex and hippocampus.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine

Related Publications

S H Yun, and M Y Cheong, and I Mook-Jung, and K Huh, and C Lee, and M W Jung
January 2022, PloS one,
S H Yun, and M Y Cheong, and I Mook-Jung, and K Huh, and C Lee, and M W Jung
January 2009, Naunyn-Schmiedeberg's archives of pharmacology,
S H Yun, and M Y Cheong, and I Mook-Jung, and K Huh, and C Lee, and M W Jung
January 1995, Vision research,
S H Yun, and M Y Cheong, and I Mook-Jung, and K Huh, and C Lee, and M W Jung
January 1996, Acta neurobiologiae experimentalis,
S H Yun, and M Y Cheong, and I Mook-Jung, and K Huh, and C Lee, and M W Jung
August 2008, Experimental neurology,
S H Yun, and M Y Cheong, and I Mook-Jung, and K Huh, and C Lee, and M W Jung
January 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S H Yun, and M Y Cheong, and I Mook-Jung, and K Huh, and C Lee, and M W Jung
March 1998, The European journal of neuroscience,
S H Yun, and M Y Cheong, and I Mook-Jung, and K Huh, and C Lee, and M W Jung
January 2008, Neural plasticity,
S H Yun, and M Y Cheong, and I Mook-Jung, and K Huh, and C Lee, and M W Jung
January 1995, Behavioural brain research,
S H Yun, and M Y Cheong, and I Mook-Jung, and K Huh, and C Lee, and M W Jung
May 2024, Molecular and cellular neurosciences,
Copied contents to your clipboard!