Presynaptic protein kinase activity supports long-term potentiation at synapses between individual hippocampal neurons. 2000

P Pavlidis, and J Montgomery, and D V Madison
Department of Molecular Physiology, Stanford University School of Medicine, Stanford, California 94305-5345, USA.

Simultaneous microelectrode recording from two individual synaptically connected neurons enables the direct analysis of synaptic transmission and plasticity at a minimal synaptic connection. We have recorded from pairs of CA3 pyramidal neurons in organotypic hippocampal slices to examine the properties of long-term potentiation (LTP) at such minimal connections. LTP in minimal connections was found to be identical to the NMDA-dependent LTP expressed by CA3-CA1 synapses, demonstrating this system provides a good model for the study of the mechanisms of LTP expression. The LTP at minimal synaptic connections does not behave as a simple increase in transmitter release probability, because the amplitude of unitary EPSCs can increase several-fold, unlike what is observed when release probability is increased by raising extracellular calcium. Taking advantage of the relatively short axon connecting neighboring CA3 neurons, we found it feasible to introduce pharmacological agents to the interior of presynaptic terminals by injection into the presynaptic soma and have used this technique to investigate presynaptic effects on basal transmission and LTP. Presynaptic injection of nicotinamide reduced basal transmission, but LTP in these pairs was essentially normal. In contrast, presynaptic injection of H-7 significantly depressed LTP but not basal transmission, indicating a specific role of presynaptic protein kinases in LTP. These results demonstrate that pharmacological agents can be directly introduced into the presynaptic cell and that a purely presynaptic perturbation can alter this plasticity.

UI MeSH Term Description Entries
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015763 2-Amino-5-phosphonovalerate The D-enantiomer is a potent and specific antagonist of NMDA glutamate receptors (RECEPTORS, N-METHYL-D-ASPARTATE). The L form is inactive at NMDA receptors but may affect the AP4 (2-amino-4-phosphonobutyrate; APB) excitatory amino acid receptors. 2-Amino-5-phosphonopentanoic Acid,2-Amino-5-phosphonovaleric Acid,2-APV,2-Amino-5-phosphonopentanoate,5-Phosphononorvaline,d-APV,dl-APV,2 Amino 5 phosphonopentanoate,2 Amino 5 phosphonopentanoic Acid,2 Amino 5 phosphonovalerate,2 Amino 5 phosphonovaleric Acid,5 Phosphononorvaline
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017774 Long-Term Potentiation A persistent increase in synaptic efficacy, usually induced by appropriate activation of the same synapses. The phenomenological properties of long-term potentiation suggest that it may be a cellular mechanism of learning and memory. Long Term Potentiation,Long-Term Potentiations,Potentiation, Long-Term,Potentiations, Long-Term

Related Publications

P Pavlidis, and J Montgomery, and D V Madison
June 1995, Science (New York, N.Y.),
P Pavlidis, and J Montgomery, and D V Madison
March 2006, Proceedings of the National Academy of Sciences of the United States of America,
P Pavlidis, and J Montgomery, and D V Madison
October 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Pavlidis, and J Montgomery, and D V Madison
February 2009, Journal of neurochemistry,
P Pavlidis, and J Montgomery, and D V Madison
June 2003, Journal of neurophysiology,
P Pavlidis, and J Montgomery, and D V Madison
May 2008, Molecular pain,
P Pavlidis, and J Montgomery, and D V Madison
October 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Pavlidis, and J Montgomery, and D V Madison
June 2009, Biochemical and biophysical research communications,
P Pavlidis, and J Montgomery, and D V Madison
January 1990, Cold Spring Harbor symposia on quantitative biology,
P Pavlidis, and J Montgomery, and D V Madison
July 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!