T lymphocyte-enriched murine peritoneal exudate cells. III. Inhibition of antigen-induced T lymphocyte Proliferation with anti-Ia antisera. 1976

R H Schwartz, and C S David, and D H Sachs, and W E Paul

The recent development of a reliable murine T lymphocyte proliferation assay has facilitated the study of T lymphocyte function in vitro. In this paper, the effect of anti-histocompatibility antisera on the proliferative response was investigated. The continuous presence of anti-Ia antisera in the cultures was found to inhibit the responses to the antigens poly (Glu58 Lys38 Tyr4) [GLT], poly (Tyr, Glu) ploy D,L Ala-poly Lys [(T,G)-A--L], poly (Phe, Glu)-poly D,L Ala-poly Lys [(phi, G)-A--L], lactate dehydrogenase H4, staphylococcal nuclease, and the IgA myeloma protein, TEPC 15. The T lymphocyte proliferative responses to all of these antigens have previously been shown to be under the genetic control of major histocompatibility-linked immune response genes. The anti-Ia antisera were also capable of inhibiting proliferative responses to antigens such as PPD, to which all strains respond. In contrast, antisera directed solely against H-2K or H-2D antigens did not give significant inhibition. Anti-Ia antisera capable of reacting with antigens coded for by genetically defined subregions of the I locus were capable of completely inhibiting the proliferative response. In the two cases studied, GLT and (T,G)-A--L, an Ir gene controlling the T lymphocyte proliferative response to the antigen had been previously mapped to the same subregion as that which coded for the Ia antigens recognized by the blocking antisera. Finally, in F1 hybrids between responder and nonresponder strains, the anti-Ia antisera showed haplotype-specific inhibition. That is, anti-Ia antisera directed against the responder haplotype could completely block the antigen response controlled by Ir genes of that haplotype; anti-Ia antisera directed against Ia antigens of the nonresponder haplotype gave only partial or no inhibition. Since this selective inhibition was reciprocal depending on which antigen was used, it suggested that the mechanism of anti-Ia antisera inhibition was not cell killing or a nonspecific turning off of the cell but rather a blockade of antigen stimulation at the cell surface. Furthermore, the selective inhibition demonstrates a phenotypic linkage between Ir gene products and Ia antigens at the cell surface. These results, coupled with the known genetic linkage of Ir genes and the genes coding for Ia antigens, suggest that Ia antigens are determinants on Ir gene products.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007125 Immunogenetics A subdiscipline of genetics which deals with the genetic basis of the immune response (IMMUNITY). Immunogenetic
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D011131 Polyribonucleotides A group of 13 or more ribonucleotides in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D006649 Histocompatibility Antigens A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection. Transplantation Antigens,Antigens, Transplantation,Histocompatibility Antigen,LD Antigens,SD Antigens,Antigen, Histocompatibility,Antigens, Histocompatibility,Antigens, LD,Antigens, SD
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen
D001202 Ascitic Fluid The serous fluid of ASCITES, the accumulation of fluids in the PERITONEAL CAVITY. Peritoneal Effusion,Peritoneal Fluid,Ascitic Fluids,Effusion, Peritoneal,Fluid, Ascitic,Fluid, Peritoneal,Peritoneal Effusions,Peritoneal Fluids

Related Publications

R H Schwartz, and C S David, and D H Sachs, and W E Paul
March 1976, The Journal of experimental medicine,
R H Schwartz, and C S David, and D H Sachs, and W E Paul
November 1975, Journal of immunology (Baltimore, Md. : 1950),
R H Schwartz, and C S David, and D H Sachs, and W E Paul
February 1977, The Journal of experimental medicine,
R H Schwartz, and C S David, and D H Sachs, and W E Paul
March 1974, Journal of immunology (Baltimore, Md. : 1950),
R H Schwartz, and C S David, and D H Sachs, and W E Paul
January 1977, Cold Spring Harbor symposia on quantitative biology,
R H Schwartz, and C S David, and D H Sachs, and W E Paul
September 1995, The Korean journal of parasitology,
R H Schwartz, and C S David, and D H Sachs, and W E Paul
March 1976, Cellular immunology,
R H Schwartz, and C S David, and D H Sachs, and W E Paul
October 1979, Cellular immunology,
R H Schwartz, and C S David, and D H Sachs, and W E Paul
May 1977, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!