Association of a lower molecular weight protein to the mu-opioid receptor demonstrated by (125)I-beta-endorphin cross-linking studies. 2000

P Y Law, and S J Tine, and L A McLeod, and H H Loh
Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA. ping@mail.ahc.umn.edu

Cross-linking experiments using the (125)I-beta-endorphin revealed the presence of several receptor-related species in cell lines expressing endogenous opioid receptors, including a small molecular mass protein (approximately 22 kDa). Previous reports have suggested that this 22-kDa (125)I-beta-endorphin cross-linked protein could be the degradative product from a higher molecular mass species, i.e., a fragment of the receptor. To determine if this protein is indeed a degraded receptor fragment, (125)I-beta-endorphin was cross-linked to the (His)(6) epitope-tagged mu-opioid receptor (His-mu) stably expressed in the murine neuroblastoma Neuro(2A) cells. Similar to earlier reports with cell lines expressing endogenous receptors, two major bands of 72- and 25-kDa proteins were specifically cross-linked. Initial cross-linking experiments indicated the absolute requirement of the high-affinity (125)I-beta-endorphin binding to the mu-opioid receptor prior to the appearance of the low molecular weight species, suggesting that the 22-kDa protein could be a degraded fragment of the receptor. However, variations in the ratios of these protein bands being cross-linked by several homo- or heterobifunctional cross-linking agents were observed. Although neither the carboxyl terminus mu-opioid receptor-specific antibodies nor the antibodies against the epitope at the amino terminus of the receptor could recognize the 22-kDa protein, this (125)I-beta-endorphin cross-linked species could be coimmunoprecipitated with the receptor antibodies or could be isolated with a nickel resin affinity chromatography. The direct physical association of the 22-kDa protein with the receptor was demonstrated also by the observation that the 22-kDa protein could not bind to the nickel resin alone, but that its binding to the nickel resin was restored in the presence of the His-mu. Taken together, these results suggest that the 22-kDa protein cross-linked by (125)I-beta-endorphin is not a degradative product, but a protein located within the proximity of the mu-opioid receptor, and that it is tightly associated with the receptor.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001615 beta-Endorphin A 31-amino acid peptide that is the C-terminal fragment of BETA-LIPOTROPIN. It acts on OPIOID RECEPTORS and is an analgesic. Its first four amino acids at the N-terminal are identical to the tetrapeptide sequence of METHIONINE ENKEPHALIN and LEUCINE ENKEPHALIN. Endorphin, beta,beta-Endorphin (1-31),beta Endorphin
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

P Y Law, and S J Tine, and L A McLeod, and H H Loh
February 1989, Brain research. Developmental brain research,
P Y Law, and S J Tine, and L A McLeod, and H H Loh
July 1989, European journal of pharmacology,
P Y Law, and S J Tine, and L A McLeod, and H H Loh
January 1990, Progress in clinical and biological research,
P Y Law, and S J Tine, and L A McLeod, and H H Loh
April 1990, The Journal of pharmacology and experimental therapeutics,
P Y Law, and S J Tine, and L A McLeod, and H H Loh
October 1992, The Journal of pharmacology and experimental therapeutics,
P Y Law, and S J Tine, and L A McLeod, and H H Loh
April 1996, The Journal of pharmacology and experimental therapeutics,
P Y Law, and S J Tine, and L A McLeod, and H H Loh
January 1996, Addiction biology,
P Y Law, and S J Tine, and L A McLeod, and H H Loh
January 1996, Peptides,
P Y Law, and S J Tine, and L A McLeod, and H H Loh
August 1985, International journal of peptide and protein research,
Copied contents to your clipboard!