Effect of ionophore X-537A on desensitization rate and tension development in potassium-depolarized muscle fibres. 1976

W A DeBassio, and R L Parsons, and R M Schnitzler

The effects of the ionophore X-537A were studied on carbamylcholine (carbachol)-induced densitization and on tension development in relaxed potassium-depolarized frog sartorius muscles. 2 X-537A accelerated carbachol-induced desensitization in Ca2+-deficient solutions without having any effect on the conductance of the membrane in the absence of carbachol or on the extent of the carbachol-induced increase in conductance. 3 In Ca2+-deficient solution, the acceleration of desensitization by the ionophore was concentration-dependent. No effect was observed with concentrations less than 5 muM and maximal acceleration was evident with 10 muM. 4 The influence of X-537A on desensitization was time-dependent. At 20 muM X-537A, there was a marked acceleration of desensitization by the end of 5 min exposure. An additional gradual acceleration occurred during a 5 to 30 min treatment. No acceleration of desensitization was evident when X-537A was simultaneously applied with carbachol to the end-plate region without prior exposure to the ionophore. 5 Desensitization also was accelerated by 30 min exposure to 20 muM X-537A in solutions containing Ca2+ or deficient in both Mg2+ and Ca2+; the rate being increased 2.8-fold in Ca2+-containing solutions, 2.9-fold in Ca2+-deficient solutions containing Mg2+, and 2.5-fold in divalent cation-deficient solutions. 6 Tension development gradually occurred in relaxed potassium-depolarized muscle preparations exposed to 20 muM X-537A. The onset of tension development occurred only after approximately 25 min of exposure both in preparations kept in Ca2+-deficient or Ca2+-containing solutions. By the end of 90 min in the ionophore, the tension developed was approximately 12% and 23% of the initial potassium contracture in those preparations maintained in the Ca2+-deficient or Ca2+-containing solutions, respectively. 7 We assume that the increase in desensitization rate following exposure to X-537A results from an elevation of the intracellular Ca2+ concentration. That muscle tension gradually increased during exposure to the ionophore supports this conclusion. The acceleration of densitization by X-537A in the absence of external Ca2+ supports the view that the site of calcium acceleration is not on the external surface of the end-plate membrane either at or near the agonist-recognition site but rather on the inner surface.

UI MeSH Term Description Entries
D007832 Lasalocid Cationic ionophore antibiotic obtained from Streptomyces lasaliensis that, among other effects, dissociates the calcium fluxes in muscle fibers. It is used as a coccidiostat, especially in poultry. Avatec,Lasalocid A,Ro 2-2985,X-537A,Ro 2 2985,Ro 22985,X 537A,X537A
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

W A DeBassio, and R L Parsons, and R M Schnitzler
January 1976, Experientia,
W A DeBassio, and R L Parsons, and R M Schnitzler
January 1974, Journal of clinical pharmacology,
W A DeBassio, and R L Parsons, and R M Schnitzler
September 1982, Archives internationales de pharmacodynamie et de therapie,
W A DeBassio, and R L Parsons, and R M Schnitzler
October 1983, Archives internationales de pharmacodynamie et de therapie,
W A DeBassio, and R L Parsons, and R M Schnitzler
June 1976, Life sciences,
W A DeBassio, and R L Parsons, and R M Schnitzler
April 1978, Acta physiologica Scandinavica,
W A DeBassio, and R L Parsons, and R M Schnitzler
October 2004, Biochemical pharmacology,
W A DeBassio, and R L Parsons, and R M Schnitzler
June 1961, The Journal of physiology,
W A DeBassio, and R L Parsons, and R M Schnitzler
November 1975, Acta physiologica Scandinavica,
W A DeBassio, and R L Parsons, and R M Schnitzler
January 1980, Planta,
Copied contents to your clipboard!