The role of intraneuronal amine levels in the feedback control of dopamine, noradrenaline and 5-hydroxytryptamine synthesis in rat brain. 1976

A Carlsson, and W Kehr, and M Lindqvist

The influence of varying brain levels of dopamine, noradrenaline and 5-HT on their respective synthesis rates has been investigated. The first step in monoamine synthesis was studied in vivo by measuring the accumulation of dopa and 5-hydroxytryptophan after inhibition of the aromatic L-amino acid decarboxylase. Variations in monoamine levels were obtained by combined treatment with inhibitors of the decarboxylase (NSD 1015 or Ro 4-4602) and of monoamine oxidase (pargyline). An increase in monoamine levels by pargyline was found to inhibit the synthesis of dopamine, noradrenaline and 5-HT. Conversely, a decrease in monoamine levels induced by the decarboxylase inhibitor Ro 4-4602 appeared to stimulate dopamine and noradrenaline synthesis but had no effect on 5-HT synthesis. The influence of varying levels of dopamine and noradrenaline on the synthesis of these amines could still be demonstrated after blockade of dopamine receptos and of alpha-adrenergic (noradrenaline) receptors by haloperidol, suggesting that the mechanism involved in this feedback control is mediated via end-product inhibition of tyrosine hydroxylase. On the other hand, the stimulating influence of haloperidol on the synthesis of catecholamines does not seem to be directly related to changes in catecholamine levels. It is concluded that the short-term control of catecholamine synthesis presumably involves two independent feedback mechanisms, one intraneuronal mechanism operating via end-product inhibition, and one synaptic mechanism mediated via dopamine and noradrenaline receptors, respectively. Both pre- and postsynaptic receptors may be involved in the latter mechanism.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010293 Pargyline A monoamine oxidase inhibitor with antihypertensive properties. Pargyline Hydrochloride,Hydrochloride, Pargyline
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004295 Dihydroxyphenylalanine A beta-hydroxylated derivative of phenylalanine. The D-form of dihydroxyphenylalanine has less physiologic activity than the L-form and is commonly used experimentally to determine whether the pharmacological effects of LEVODOPA are stereospecific. Dopa,3,4-Dihydroxyphenylalanine,3-Hydroxy-DL-tyrosine,Dihydroxyphenylalanine Hydrochloride, (2:1),beta-Hydroxytyrosine,3 Hydroxy DL tyrosine,3,4 Dihydroxyphenylalanine,beta Hydroxytyrosine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D006897 Hydroxyindoleacetic Acid 5-HIAA,5-Hydroxy-3-Indoleacetic Acid,5-Hydroxyindolamine Acetic Acid,5 Hydroxy 3 Indoleacetic Acid,5 Hydroxyindolamine Acetic Acid,Acetic Acid, 5-Hydroxyindolamine,Acid, 5-Hydroxy-3-Indoleacetic,Acid, 5-Hydroxyindolamine Acetic,Acid, Hydroxyindoleacetic
D006916 5-Hydroxytryptophan The immediate precursor in the biosynthesis of SEROTONIN from tryptophan. It is used as an antiepileptic and antidepressant. 5-HTP,Hydroxytryptophan,Oxitriptan,Oxytryptophan,Tryptophan, 5-Hydroxy-,5 Hydroxytryptophan,5-Hydroxy- Tryptophan,Tryptophan, 5 Hydroxy

Related Publications

A Carlsson, and W Kehr, and M Lindqvist
March 1971, Journal of neurochemistry,
A Carlsson, and W Kehr, and M Lindqvist
January 1979, Polish journal of pharmacology and pharmacy,
A Carlsson, and W Kehr, and M Lindqvist
January 1961, Acta pharmacologica et toxicologica,
A Carlsson, and W Kehr, and M Lindqvist
September 1960, Journal of neurochemistry,
A Carlsson, and W Kehr, and M Lindqvist
January 1967, Comptes rendus des seances de la Societe de biologie et de ses filiales,
A Carlsson, and W Kehr, and M Lindqvist
January 1990, Journal of inherited metabolic disease,
A Carlsson, and W Kehr, and M Lindqvist
October 1988, Neurochemical research,
Copied contents to your clipboard!