Multiple action sites of flufenamate on ion transport across the rat distal colon. 2000

G Schultheiss, and M Frings, and G Hollingshaus, and M Diener
Institut für Veterinär-Physiologie, Justus-Liebig-Universität Giebetaen, Frankfurter Str.100, D-35392 Gieben, Germany.

The antisecretory effects of flufenamate in the rat distal colon were investigated with the Ussing-chamber and the patch-clamp method as well as by measurements of the intracellular Ca(2+) concentration using fura-2-loaded isolated crypts. Flufenamate (5.10(-4) mol l(-1)) suppressed the short-circuit current (Isc) induced by carbachol (5.10(-5) mol l(-1)), forskolin (5.10(-6) mol l(-1)) and the Isc induced by the membrane-permeable analogue of cyclic AMP, CPT - cyclic AMP (10(-4) mol l(-1)). Indomethacin (10(-6) - 10(-4) mol l(-1)) did not mimic the effect of flufenamate, indicating that the antisecretory effect of flufenamate is not related to the inhibition of the cyclo-oxygenase. When the basolateral membrane was depolarized by a high K(+) concentration and a Cl(-) current was induced by a mucosally directed Cl(-) gradient, the forskolin-stimulated Cl(-) current was blocked by flufenamate, indicating an inhibition of the cyclic AMP-stimulated apical Cl(-) conductance. When the apical membrane was permeabilized by the ionophore, nystatin, flufenamate decreased the basolateral K(+) conductance and inhibited the Na(+) - K(+)-ATPase. Patch-clamp experiments revealed a variable effect of flufenamate on membrane currents. In seven out of 11 crypt cells the drug induced an increase of the K(+) current, whereas in the remaining four cells an inhibition was observed. Experiments with fura-2-loaded isolated crypts indicated that flufenamate increased the basal as well as the carbachol-stimulated intracellular Ca(2+) concentration. These results demonstrate that flufenamate possesses multiple action sites in the rat colon: The apical Cl(-) conductance, basolateral K(+) conductances and the Na(+) - K(+)-ATPase.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007811 Lanthanum The prototypical element in the rare earth family of metals. It has the atomic symbol La, atomic number 57, and atomic weight 138.91. Lanthanide ion is used in experimental biology as a calcium antagonist; lanthanum oxide improves the optical properties of glass.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005439 Flufenamic Acid An anthranilic acid derivative with analgesic, anti-inflammatory, and antipyretic properties. It is used in musculoskeletal and joint disorders and administered by mouth and topically. (From Martindale, The Extra Pharmacopoeia, 30th ed, p16) Dignodolin,Acid, Flufenamic

Related Publications

G Schultheiss, and M Frings, and G Hollingshaus, and M Diener
July 2008, British journal of pharmacology,
G Schultheiss, and M Frings, and G Hollingshaus, and M Diener
September 2004, Pflugers Archiv : European journal of physiology,
G Schultheiss, and M Frings, and G Hollingshaus, and M Diener
February 2011, American journal of physiology. Gastrointestinal and liver physiology,
G Schultheiss, and M Frings, and G Hollingshaus, and M Diener
November 2009, British journal of pharmacology,
G Schultheiss, and M Frings, and G Hollingshaus, and M Diener
January 2012, Frontiers in physiology,
G Schultheiss, and M Frings, and G Hollingshaus, and M Diener
May 1991, The Journal of pharmacology and experimental therapeutics,
G Schultheiss, and M Frings, and G Hollingshaus, and M Diener
June 1996, The Journal of physiology,
G Schultheiss, and M Frings, and G Hollingshaus, and M Diener
April 2000, American journal of physiology. Gastrointestinal and liver physiology,
G Schultheiss, and M Frings, and G Hollingshaus, and M Diener
September 2013, European journal of pharmacology,
G Schultheiss, and M Frings, and G Hollingshaus, and M Diener
November 2005, The Journal of surgical research,
Copied contents to your clipboard!