Beta-blockade, but not normoglycemia or hyperinsulinemia, markedly diminishes stress-induced hyperglycemia in diabetic dogs. 2000

S Rashid, and Z Q Shi, and M Niwa, and J M Mathoo, and M L Vandelangeryt, and D Bilinski, and G F Lewis, and M Vranic
Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada.

Stress-induced hyperglycemia can lead to significant deterioration in glycemic control in individuals with diabetes. Previously, we have shown in normal dogs that, after intracerebroventricular (ICV) administration of carbachol (a model of moderate stress), increases in both the metabolic clearance rate (MCR) of glucose and endogenous glucose production (GP) occur. However, in hyperglycemic diabetic dogs subjected to the same stress, the MCR of glucose does not increase and glycemia therefore markedly deteriorates because of stimulation of GP. Our aims were to determine the following: 1) whether insulin-induced acute normalization of glycemia, with or without beta-blockade, would correct glucose clearance and prevent the hyperglycemic effect of stress, and 2) whether hyperinsulinemia per se could correct these abnormalities. Stress was induced by ICV carbachol in 27 experiments in five alloxan-administered diabetic dogs subjected to the following protocols in random order: 1) basal insulin infusion (BI) to restore normoglycemia; 2) basal insulin infusion with beta-blockade (BI+block); 3) normoglycemic-hyperinsulinemic clamp with threefold elevation of insulin above basal (3x BI); and 4) normoglycemic-hyperinsulinemic clamp with fivefold elevation of insulin above basal (5 x BI). The BI+block protocol fully prevented stress-induced hyperglycemia, both by increasing MCR (deltaMCR at peak: 0.72 +/- 0.25 ml x kg(-1) x min(-1) vs. no change in BI, P < 0.05) and by diminishing the stress-induced increment in GP observed in BI (deltaGP at peak: 3.72 +/- 0.09 micromol x kg(-1) x min(-1) for BI+block vs. 14.10 +/- 0.31 micromol x kg(-1) x min(-1) for BI, P < 0.0001). In contrast, 3x BI and 5x BI treatments with normoglycemic-hyperinsulinemic clamps proportionately increased basal MCR at baseline, but paradoxically were not associated with an increase in MCR in response to stress, which induced a twofold increase in GP. Thus, in alloxan-administered diabetic dogs, stress increased GP but not MCR, despite normalization of glycemia with basal or high insulin. In contrast, beta-adrenergic blockade almost completely restored the metabolic response to stress to normal and prevented marked hyperglycemia, both by limiting the rise in GP and by increasing glucose MCR. We conclude that acute normalization of glycemia with basal insulin or hyperinsulinemia does not prevent hyperglycemic effects of stress unless accompanied by beta-blockade, and we speculate that short-term beta-blockade may be a useful treatment modality under some stress conditions in patients with diabetes.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine

Related Publications

S Rashid, and Z Q Shi, and M Niwa, and J M Mathoo, and M L Vandelangeryt, and D Bilinski, and G F Lewis, and M Vranic
November 2000, European journal of pharmacology,
S Rashid, and Z Q Shi, and M Niwa, and J M Mathoo, and M L Vandelangeryt, and D Bilinski, and G F Lewis, and M Vranic
February 1989, The American journal of physiology,
S Rashid, and Z Q Shi, and M Niwa, and J M Mathoo, and M L Vandelangeryt, and D Bilinski, and G F Lewis, and M Vranic
May 1997, Clinica chimica acta; international journal of clinical chemistry,
S Rashid, and Z Q Shi, and M Niwa, and J M Mathoo, and M L Vandelangeryt, and D Bilinski, and G F Lewis, and M Vranic
November 1992, Diabetes,
S Rashid, and Z Q Shi, and M Niwa, and J M Mathoo, and M L Vandelangeryt, and D Bilinski, and G F Lewis, and M Vranic
June 1982, Journal of the American Veterinary Medical Association,
S Rashid, and Z Q Shi, and M Niwa, and J M Mathoo, and M L Vandelangeryt, and D Bilinski, and G F Lewis, and M Vranic
September 2012, Annals of surgery,
S Rashid, and Z Q Shi, and M Niwa, and J M Mathoo, and M L Vandelangeryt, and D Bilinski, and G F Lewis, and M Vranic
September 2004, The Journal of clinical endocrinology and metabolism,
S Rashid, and Z Q Shi, and M Niwa, and J M Mathoo, and M L Vandelangeryt, and D Bilinski, and G F Lewis, and M Vranic
July 1992, Indian journal of physiology and pharmacology,
S Rashid, and Z Q Shi, and M Niwa, and J M Mathoo, and M L Vandelangeryt, and D Bilinski, and G F Lewis, and M Vranic
November 2003, International journal of cancer,
S Rashid, and Z Q Shi, and M Niwa, and J M Mathoo, and M L Vandelangeryt, and D Bilinski, and G F Lewis, and M Vranic
January 1990, Journees annuelles de diabetologie de l'Hotel-Dieu,
Copied contents to your clipboard!