Radiation tolerance of rat spinal cord to pulsed dose rate (PDR-) brachytherapy: the impact of differences in temporal dose distribution. 2000

L A Pop, and W T Millar, and M van der Plas, and A J van der Kogel
Institute of Radiotherapy, University of Nijmegen, P.O. Box 9101, 6500 HB, The, Nijmegen, Netherlands.

OBJECTIVE To investigate the impact of a time-variable dose rate during a high dose rate (HDR-) or pulsed dose rate (PDR-) brachytherapy fraction with the HDR-microSelectron and to compare this with the biological effect of a constant dose rate treatment with the same average dose rate (as in the case of (192)Ir-wires). Moreover, the kinetics of repair in rat spinal cord are investigated using a wide spectrum of temporal dose distributions. METHODS Two parallel catheters are inserted on each side of the vertebral bodies of the rat spinal column (Th(10)-L(4)) and connected to the HDR-microSelectron. Interstitial irradiation (IRT) is performed with a stepping (192)Ir-point source, varying the activity of the point source between 0.3 and 6.5 Ci. Three different groups of experiments are defined, varying the overall treatment time and average dose rates in the range of 3-8, 28-53 and 82-182 min and 312-489 Gy/h, 32-56 Gy/h and 13-15 Gy/h, respectively. Difference in temporal dose distribution (dose rate variation) during almost the same overall treatment time is obtained by varying the number of pulses per dwell position in either one or ten runs through the implant. For reasons of comparison, previously reported results of continuous irradiation at a constant dose rate obtained with two (192)Ir-wires in a fixed position are reanalyzed. Paralysis of the hindlegs after 5-6 months and histopathological examination of the spinal cord of each animal are used as experimental endpoints. RESULTS During one run of the (192)Ir-point source, the peak dose rate is at least 25 times higher as compared with the minimum local dose rate and almost four times higher as compared with the average dose rate. For the three different groups of varying overall treatment times and average dose rates there is a significant difference in biological effect, with an ED(50)-value of 23.1-23.6 Gy (average dose rate 312-489 Gy/h), 25.4-27.9 Gy (average dose rate 312-489 Gy/h) and 29.3-33 Gy (average dose rate 13-15 Gy/h). For these range of single doses, difference in temporal dose distribution with either one or ten runs is only significant for treatment times less then 1 h. For the prolonged treatment times at lower average dose rates, the difference between one or ten run is no longer significant. However, the results with the (192)Ir-point source at an average dose rate/run of 13-15 Gy/h are significantly different from the ED(50)-value of 33 Gy using (192)Ir-wires at the same but constant dose rate. Using different types of analysis to estimate the repair parameters, the best fit of the data is obtained assuming biphasic repair kinetics and a variable dose rate (geometrically dependent) for the (192)Ir-point source. On the basis of the incomplete repair LQ model, two repair processes with an alpha/beta ratio=2.47 Gy and repair halftimes of 0.19 and 2.16 h are detected. The partition coefficient for the longer repair process is 0.98. This results in the proportion of total damage associated with the longer repair halftime being 0.495 for short sharp fractions with complete repair in between. CONCLUSIONS Even in the range of high dose rates of 15-500 Gy/h, spinal cord radiation tolerance is significantly increased by a reduction in dose rate. For larger doses per fraction in PDR-brachytherapy dose rate variation is important, especially for tissues with very short repair half times (components). In rat spinal cord the repair of sublethal damage (SLD) is governed by a biphasic repair process with repair halftimes of 0.19 and 2.16 h.

UI MeSH Term Description Entries
D008297 Male Males
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D001918 Brachytherapy A collective term for interstitial, intracavity, and surface radiotherapy. It uses small sealed or partly-sealed sources that may be placed on or near the body surface or within a natural body cavity or implanted directly into the tissues. Curietherapy,Implant Radiotherapy,Plaque Therapy, Radioisotope,Radioisotope Brachytherapy,Radiotherapy, Interstitial,Radiotherapy, Intracavity,Radiotherapy, Surface,Brachytherapy, Radioisotope,Interstitial Radiotherapy,Intracavity Radiotherapy,Radioisotope Plaque Therapy,Radiotherapy, Implant,Surface Radiotherapy,Therapy, Radioisotope Plaque
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

L A Pop, and W T Millar, and M van der Plas, and A J van der Kogel
November 1996, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
L A Pop, and W T Millar, and M van der Plas, and A J van der Kogel
June 2010, Cancer radiotherapie : journal de la Societe francaise de radiotherapie oncologique,
L A Pop, and W T Millar, and M van der Plas, and A J van der Kogel
February 1977, Radiology,
L A Pop, and W T Millar, and M van der Plas, and A J van der Kogel
March 1999, International journal of radiation oncology, biology, physics,
L A Pop, and W T Millar, and M van der Plas, and A J van der Kogel
October 1997, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
L A Pop, and W T Millar, and M van der Plas, and A J van der Kogel
June 2008, Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico,
L A Pop, and W T Millar, and M van der Plas, and A J van der Kogel
September 1997, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
L A Pop, and W T Millar, and M van der Plas, and A J van der Kogel
January 2007, Acta oncologica (Stockholm, Sweden),
L A Pop, and W T Millar, and M van der Plas, and A J van der Kogel
December 2012, Journal of contemporary brachytherapy,
L A Pop, and W T Millar, and M van der Plas, and A J van der Kogel
December 1998, International journal of radiation oncology, biology, physics,
Copied contents to your clipboard!