Activities of mitochondrial oxidative phosphorylation enzymes in cultured amniocytes. 2000

S K Chowdhury, and Z Drahota, and D Floryk, and P Calda, and J Houstek
Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 4, Prague, Czech Republic.

Amniocytes represent a population of foetal cells that can be used for prenatal diagnosis in families with suspected mitochondrial oxidative phosphorylation (OXPHOS) defects. In this paper, we present a complex protocol for evaluation of the function of mitochondrial OXPHOS enzymes in cultured amniocytes using three independent and complementary methods: (a) spectrophotometry as a tool for determination of the capacities of mitochondrial respiratory-chain enzymes (NADH ubiquinone oxidoreductase, succinate- and glycerophosphate cytochrome c reductase, cytochrome c oxidase and citrate synthase); (b) polarography as a tool for the evaluation of mitochondrial OXPHOS enzyme functions in situ using digitonin-permeabilised amniocytes (rotenone-sensitive oxidation of pyruvate+malate, antimycin A-sensitive oxidation of succinate, KCN-sensitive oxidation of cytochrome c, ADP-activated substrate oxidation) and (c) cytofluorometric determination of tetramethyl rhodamine methyl ester (TMRM) fluorescence in digitonin-permeabilised amniocytes as a sensitive way to determine the mitochondrial membrane potential under steady-state conditions (state 4 with succinate). These protocols are presented together with reference control values using 9-22 independent cultures of amniocytes.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009245 NADH Dehydrogenase A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1. NADH Cytochrome c Reductase,Diaphorase (NADH Dehydrogenase),NADH (Acceptor) Oxidoreductase,NADH Cytochrome c Oxidoreductase,Dehydrogenase, NADH
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011048 Polarography An electrochemical technique for measuring the current that flows in solution as a function of an applied voltage. The observed polarographic wave, resulting from the electrochemical response, depends on the way voltage is applied (linear sweep or differential pulse) and the type of electrode used. Usually a mercury drop electrode is used. DC Polarography,Pulse Polarography,Polarography, DC,Polarography, Pulse
D011190 Potassium Cyanide A highly poisonous compound that is an inhibitor of many metabolic processes, but has been shown to be an especially potent inhibitor of heme enzymes and hemeproteins. It is used in many industrial processes. Potassium Cyanide (K(14)CN),Potassium Cyanide (K(C(15)N)),Cyanide, Potassium
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002950 Citrate (si)-Synthase Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. Citrate Synthase,Synthase, Citrate

Related Publications

S K Chowdhury, and Z Drahota, and D Floryk, and P Calda, and J Houstek
May 1986, Clinica chimica acta; international journal of clinical chemistry,
S K Chowdhury, and Z Drahota, and D Floryk, and P Calda, and J Houstek
January 1988, Journal of inherited metabolic disease,
S K Chowdhury, and Z Drahota, and D Floryk, and P Calda, and J Houstek
November 1964, Proceedings of the National Academy of Sciences of the United States of America,
S K Chowdhury, and Z Drahota, and D Floryk, and P Calda, and J Houstek
December 1967, Angewandte Chemie (International ed. in English),
S K Chowdhury, and Z Drahota, and D Floryk, and P Calda, and J Houstek
January 2003, Journal of inherited metabolic disease,
S K Chowdhury, and Z Drahota, and D Floryk, and P Calda, and J Houstek
January 1978, Methods in enzymology,
S K Chowdhury, and Z Drahota, and D Floryk, and P Calda, and J Houstek
November 1955, The Journal of biological chemistry,
S K Chowdhury, and Z Drahota, and D Floryk, and P Calda, and J Houstek
January 1987, In vivo (Athens, Greece),
S K Chowdhury, and Z Drahota, and D Floryk, and P Calda, and J Houstek
March 1984, Journal of theoretical biology,
S K Chowdhury, and Z Drahota, and D Floryk, and P Calda, and J Houstek
May 1987, Journal of bacteriology,
Copied contents to your clipboard!