The effect of "living high-training low" on physical performance in rats. 2000

S Miyazaki, and A Sakai
Department of Sports Medicine, Research Center for Aging and Adaptation, Shinshu University School of Medicine, Matsumoto, Japan.

In this research, we hypothesized that, in rats, adaptation to high altitude (2500 m) plus training at low altitude (610 m), "living high-training low", improves physical performance at low altitude more than living and training at low altitude (610 m). Rats were divided into four groups: (1) living at low altitude (LL, n=12), (2) living and training at low altitude (LLTL, n=13), (3) living at high altitude (LH, n=12), (4) living at high altitude and training at low altitude (LHTL, n=13). The program for living at high altitude involved raising rats under hypobaric hypoxia (equivalent to 2500 m), and the training program consisted of running on a treadmill at low altitude. All groups were raised at each altitude and trained to run at 35 m/min for 40 min/day, 6 days/week for 6 weeks. During this program, we measured heart rates both at rest and during exercise, and performed running-time trials. The mean heart rate during exercise was lower in groups with training than in groups without training, and the groups receiving training could run longer than the untrained groups. The LHTL group especially showed the lowest mean heart rate during exercise and the longest running time among all groups. After 6 weeks of the training program, all rats had a catheter implanted into the carotid artery, and the mean systemic arterial pressure was continuously measured during treadmill running. The rate of increase of this pressure as the running intensity increased was lower in groups with training than in groups without training, especially in the LHTL group. Finally, we anesthetized all the rats and extracted both the right and left ventricles, and the triceps surae and liver. Training increased the weight of the left ventricle, triceps surae, and liver. The increase in weight of the left ventricle and triceps surae was higher in the LHTL group than in the LLTL group in particular. It appeared that living high-training low may be an effective strategy to improve performance ability at low altitude.

UI MeSH Term Description Entries
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010805 Physical Conditioning, Animal Diet modification and physical exercise to improve the ability of animals to perform physical activities. Animal Physical Conditioning,Animal Physical Conditionings,Conditioning, Animal Physical,Conditionings, Animal Physical,Physical Conditionings, Animal
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006400 Hematocrit The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value. Erythrocyte Volume, Packed,Packed Red-Cell Volume,Erythrocyte Volumes, Packed,Hematocrits,Packed Erythrocyte Volume,Packed Erythrocyte Volumes,Packed Red Cell Volume,Packed Red-Cell Volumes,Red-Cell Volume, Packed,Red-Cell Volumes, Packed,Volume, Packed Erythrocyte,Volume, Packed Red-Cell,Volumes, Packed Erythrocyte,Volumes, Packed Red-Cell
D000064 Acclimatization Adaptation to a new environment or to a change in the old. Acclimation
D000531 Altitude A vertical distance measured from a known level on the surface of a planet or other celestial body. Altitudes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Miyazaki, and A Sakai
July 2003, Therapeutische Umschau. Revue therapeutique,
S Miyazaki, and A Sakai
July 1997, Journal of applied physiology (Bethesda, Md. : 1985),
S Miyazaki, and A Sakai
March 2006, European journal of applied physiology,
S Miyazaki, and A Sakai
August 2006, European journal of applied physiology,
S Miyazaki, and A Sakai
January 2001, Advances in experimental medicine and biology,
S Miyazaki, and A Sakai
August 1998, International journal of sports medicine,
S Miyazaki, and A Sakai
June 2005, European journal of applied physiology,
S Miyazaki, and A Sakai
July 2006, European journal of applied physiology,
S Miyazaki, and A Sakai
January 1974, Schweizerische Zeitschrift fur Sportmedizin,
Copied contents to your clipboard!