Visual responses of neurons in the middle temporal area of new world monkeys after lesions of striate cortex. 2000

M G Rosa, and R Tweedale, and G N Elston
Vision, Touch, and Hearing Research Centre, The University of Queensland, QLD 4072, Australia. marcello.rosa@med.monash.edu.au

In primates, lesions of striate cortex (V1) result in scotomas in which only rudimentary visual abilities remain. These aspects of vision that survive V1 lesions have been attributed to direct thalamic pathways to extrastriate areas, including the middle temporal area (MT). However, studies in New World monkeys and humans have questioned this interpretation, suggesting that remnants of V1 are responsible for both the activation of MT and residual vision. We studied the visual responses of neurons in area MT in New World marmoset monkeys in the weeks after lesions of V1. The extent of the scotoma in each case was estimated by mapping the receptive fields of cells located near the lesion border and by histological reconstruction. Two response types were observed among the cells located in the part of MT that corresponds, in visuotopic coordinates, to the lesioned part of V1. Many neurons (62%) had receptive fields that were displaced relative to their expected location, so that they represented the visual field immediately surrounding the scotoma. This may be a consequence of a process analogous to the reorganization of the V1 map after retinal lesions. However, another 20% of the cells had receptive fields centered inside the scotoma. Most of these neurons were strongly direction-selective, similar to normal MT cells. These results show that MT cells differ in their responses to lesioning of V1 and that only a subpopulation of MT neurons can be reasonably linked to residual vision and blindsight.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002144 Callithrix A genus of the subfamily CALLITRICHINAE occurring in forests of Brazil and Bolivia and containing seventeen species. Callithrix jacchus,Hapale,Marmoset, Common,Marmoset, Short-Tusked,Marmosets,Common Marmoset,Common Marmosets,Marmoset,Marmoset, Short Tusked,Short-Tusked Marmoset,Short-Tusked Marmosets
D002541 Cerebral Decortication Partial or total removal, ablation, or destruction of the cerebral cortex; may be chemical. It is not used with animals that do not possess a cortex, i.e., it is used only with mammals. Decortication, Cerebral Cortex,Cerebral Cortex Decortication,Cerebral Cortex Decortications,Cerebral Decortications,Cortex Decortication, Cerebral,Cortex Decortications, Cerebral,Decortication, Cerebral,Decortications, Cerebral,Decortications, Cerebral Cortex
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012607 Scotoma A localized defect in the visual field bordered by an area of normal vision. This occurs with a variety of EYE DISEASES (e.g., RETINAL DISEASES and GLAUCOMA); OPTIC NERVE DISEASES, and other conditions. Scotoma, Arcuate,Scotoma, Bjerrum,Scotoma, Central,Scotoma, Centrocecal,Scotoma, Altitudinal,Scotoma, Paracecal,Scotoma, Paracentral,Scotoma, Peripheral,Scotoma, Ring,Scotoma, Scintillating,Scotoma, Sector,Altitudinal Scotoma,Altitudinal Scotomas,Arcuate Scotoma,Arcuate Scotomas,Bjerrum Scotoma,Bjerrum Scotomas,Central Scotoma,Central Scotomas,Centrocecal Scotoma,Centrocecal Scotomas,Paracecal Scotoma,Paracecal Scotomas,Paracentral Scotoma,Paracentral Scotomas,Peripheral Scotoma,Peripheral Scotomas,Ring Scotoma,Ring Scotomas,Scintillating Scotoma,Scintillating Scotomas,Scotomas,Scotomas, Altitudinal,Scotomas, Arcuate,Scotomas, Bjerrum,Scotomas, Central,Scotomas, Centrocecal,Scotomas, Paracecal,Scotomas, Paracentral,Scotomas, Peripheral,Scotomas, Ring,Scotomas, Scintillating,Scotomas, Sector,Sector Scotoma,Sector Scotomas
D013702 Temporal Lobe Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE. Anterior Temporal Lobe,Brodmann Area 20,Brodmann Area 21,Brodmann Area 22,Brodmann Area 37,Brodmann Area 38,Brodmann Area 52,Brodmann's Area 20,Brodmann's Area 21,Brodmann's Area 22,Brodmann's Area 37,Brodmann's Area 38,Brodmann's Area 52,Inferior Temporal Gyrus,Middle Temporal Gyrus,Parainsular Area,Fusiform Gyrus,Gyrus Fusiformis,Gyrus Temporalis Superior,Inferior Horn of Lateral Ventricle,Inferior Horn of the Lateral Ventricle,Lateral Occipito-Temporal Gyrus,Lateral Occipitotemporal Gyrus,Occipitotemporal Gyrus,Planum Polare,Superior Temporal Gyrus,Temporal Cortex,Temporal Gyrus,Temporal Horn,Temporal Horn of the Lateral Ventricle,Temporal Operculum,Temporal Region,Temporal Sulcus,Anterior Temporal Lobes,Area 20, Brodmann,Area 20, Brodmann's,Area 21, Brodmann,Area 21, Brodmann's,Area 22, Brodmann,Area 22, Brodmann's,Area 37, Brodmann,Area 37, Brodmann's,Area 38, Brodmann,Area 38, Brodmann's,Area 52, Brodmann,Area 52, Brodmann's,Area, Parainsular,Areas, Parainsular,Brodmanns Area 20,Brodmanns Area 21,Brodmanns Area 22,Brodmanns Area 37,Brodmanns Area 38,Brodmanns Area 52,Cortex, Temporal,Gyrus, Fusiform,Gyrus, Inferior Temporal,Gyrus, Lateral Occipito-Temporal,Gyrus, Lateral Occipitotemporal,Gyrus, Middle Temporal,Gyrus, Occipitotemporal,Gyrus, Superior Temporal,Gyrus, Temporal,Horn, Temporal,Lateral Occipito Temporal Gyrus,Lobe, Anterior Temporal,Lobe, Temporal,Occipito-Temporal Gyrus, Lateral,Occipitotemporal Gyrus, Lateral,Operculum, Temporal,Parainsular Areas,Region, Temporal,Sulcus, Temporal,Temporal Cortices,Temporal Gyrus, Inferior,Temporal Gyrus, Middle,Temporal Gyrus, Superior,Temporal Horns,Temporal Lobe, Anterior,Temporal Lobes,Temporal Lobes, Anterior,Temporal Regions
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field

Related Publications

M G Rosa, and R Tweedale, and G N Elston
March 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M G Rosa, and R Tweedale, and G N Elston
March 2007, The European journal of neuroscience,
M G Rosa, and R Tweedale, and G N Elston
December 2014, Eye and brain,
M G Rosa, and R Tweedale, and G N Elston
September 1969, Journal of neurophysiology,
M G Rosa, and R Tweedale, and G N Elston
July 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M G Rosa, and R Tweedale, and G N Elston
January 1986, Experimental brain research,
M G Rosa, and R Tweedale, and G N Elston
January 2003, Neuropsychologia,
M G Rosa, and R Tweedale, and G N Elston
September 1984, The Journal of comparative neurology,
M G Rosa, and R Tweedale, and G N Elston
December 2011, The Journal of physiology,
Copied contents to your clipboard!