Viscosity analysis of the temperature dependence of the solution conformation of ovalbumin. 2000

K Monkos
Department of Biophysics, Silesian Medical Academy, Zabrze, Poland.

The viscosity of ovalbumin aqueous solutions was studied as a function of temperature and of protein concentration. Viscosity-temperature dependence was discussed on the basis of the modified Arrhenius formula at temperatures ranging from 5 to 55 degrees C. The activation energy of viscous flow for hydrated and unhydrated ovalbumin was calculated. Viscosity-concentration dependence, in turn, was discussed on the basis of Mooney equation. It has been shown that the shape parameter S decreases with increasing temperature, and self-crowding factor K does not depend on temperature. At low concentration limit the numerical values of the intrinsic viscosity and of Huggins coefficient were calculated. A master curve relating the specific viscosity etasp to the reduced concentration c[eta], over the whole range of temperature, was obtained and the three ranges of concentrations: diluted, semi-diluted and concentrated, are discussed. It has been proved that the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent for ovalbumin does not depend on temperature.

UI MeSH Term Description Entries
D010047 Ovalbumin An albumin obtained from the white of eggs. It is a member of the serpin superfamily. Serpin B14
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014783 Viscosity The resistance that a gaseous or liquid system offers to flow when it is subjected to shear stress. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Viscosities
Copied contents to your clipboard!