Scanning electron microscopic studies of the vascular smooth muscle cells and pericytes in the rat heart. 2000

K Higuchi, and H Hashizume, and Y Aizawa, and T Ushiki
Department of Anatomy and Histology, Faculty of Medicine, Niigata University, Japan.

The cytoarchitecture of smooth muscle cells and pericytes in the rat cardiac vessels was studied by scanning electron microscopy after the removal of connective tissue matrices using a modified KOH-collagenase digestion method. The initial stem of the coronary arteries had groups of smooth muscle cells which ran in various directions on the outermost layer of the media. Although smooth muscle cells in coronary arteries of more than 100 microm in the outer diameter were arranged in a rough circle around the vessel axis, oblique and/or longitudinal muscle bundles were often present in the medio-adventitial border of the vessels. The presence of irregularly oriented muscular bundles is probably connected with resistance against the stretching force induced by the beating of the heart. As the vessel size decreased toward the periphery, almost all of the smooth muscle cells became spindle-shaped with several tiny processes and ran circularly or helicaly to the vessel axis. In the precapillary arterioles (6-12 microm), smooth muscle cells acquired various cytoplasmic processes which helicaly surrounded endothelial cells. Unmyelinated nerves were often associated with arterioles. Blood capillaries were morphologically divided into three segments: arterial capillaries which had pericytes with wide and circularly oriented processes, true capillaries whose pericytes extended long and thin primary processes bilaterally along the vessel axis, and venous capillaries surrounded irregularly and loosely by wide pericytic processes. The stellate pericytes in the postcapillary venules (10-30 microm) gradually changed into flat tape-like smooth muscle cells, which ran circularly in the collecting venules and veins (30-200 microm). The large collecting veins were finally overwhelmed by superficial thin layer of the myocardium, their own smooth muscle cells being very sparse. This suggests that large veins have poor ability to contract by themselves but are influenced by the surrounding myocardial cells.

UI MeSH Term Description Entries
D008297 Male Males
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D005260 Female Females
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001160 Arterioles The smallest divisions of the arteries located between the muscular arteries and the capillaries. Arteriole

Related Publications

K Higuchi, and H Hashizume, and Y Aizawa, and T Ushiki
January 2001, Italian journal of anatomy and embryology = Archivio italiano di anatomia ed embriologia,
K Higuchi, and H Hashizume, and Y Aizawa, and T Ushiki
December 1987, Scanning microscopy,
K Higuchi, and H Hashizume, and Y Aizawa, and T Ushiki
July 1990, Journal of neurosurgery,
K Higuchi, and H Hashizume, and Y Aizawa, and T Ushiki
May 1982, Microvascular research,
K Higuchi, and H Hashizume, and Y Aizawa, and T Ushiki
December 1978, Nihon Heikatsukin Gakkai zasshi,
K Higuchi, and H Hashizume, and Y Aizawa, and T Ushiki
January 1996, International review of experimental pathology,
K Higuchi, and H Hashizume, and Y Aizawa, and T Ushiki
January 2002, The Journal of comparative neurology,
K Higuchi, and H Hashizume, and Y Aizawa, and T Ushiki
August 1975, The Anatomical record,
K Higuchi, and H Hashizume, and Y Aizawa, and T Ushiki
December 1984, Deutsche zahnarztliche Zeitschrift,
K Higuchi, and H Hashizume, and Y Aizawa, and T Ushiki
March 2008, Developmental biology,
Copied contents to your clipboard!