The role of mitochondria in the pathogenesis of neurodegenerative diseases. 2000

G Manfredi, and M F Beal
Department of Neurology and Neuroscience, Weill Medical College of Cornell University and the New York Hospital, Cornell Medical Center, New York 10021, USA. gim2004@mail.med.cornell.edu

A growing body of evidence indicates that mitochondrial dysfunction may play an important role in the pathogenesis of many neurodegenerative disorders. Because mitochondrial metabolism is not only the principal source of high energy intermediates, but also of free radicals, it has been suggested that inherited or acquired mitochondrial defects could be the cause of neuronal degeneration as a consequence of energy defects and oxidative damage. Mitochondrial respiratory chain dysfunction has been reported in association with primary mitochondrial DNA abnormalities, and also as a consequence of mutations in nuclear genes directly involved in mitochondrial functions, such as SURF1, frataxin, and paraplegin. Defects of oxidative phosphorylation and increased free radical production have also been observed in diseases that are not due to primary mitochondrial abnormalities. In these cases, the mitochondrial dysfunction is likely to be an epiphenomenon, which, nevertheless, could be of importance in precipitating a cascade of events leading to cell death. In either case, understanding the role of mitochondria in the pathogenesis of neurodegenerative diseases could be important for the development of therapeutic strategies in these disorders.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D019636 Neurodegenerative Diseases Hereditary and sporadic conditions which are characterized by progressive nervous system dysfunction. These disorders are often associated with atrophy of the affected central or peripheral nervous system structures. Degenerative Diseases, Nervous System,Degenerative Diseases, Central Nervous System,Degenerative Diseases, Neurologic,Degenerative Diseases, Spinal Cord,Degenerative Neurologic Diseases,Degenerative Neurologic Disorders,Nervous System Degenerative Diseases,Neurodegenerative Disorders,Neurologic Degenerative Conditions,Neurologic Degenerative Diseases,Neurologic Diseases, Degenerative,Degenerative Condition, Neurologic,Degenerative Conditions, Neurologic,Degenerative Neurologic Disease,Degenerative Neurologic Disorder,Neurodegenerative Disease,Neurodegenerative Disorder,Neurologic Degenerative Condition,Neurologic Degenerative Disease,Neurologic Disease, Degenerative,Neurologic Disorder, Degenerative,Neurologic Disorders, Degenerative

Related Publications

G Manfredi, and M F Beal
October 2011, Journal of neurology,
G Manfredi, and M F Beal
February 1999, Biochimica et biophysica acta,
G Manfredi, and M F Beal
January 2004, Toxicology mechanisms and methods,
G Manfredi, and M F Beal
July 2019, CNS neuroscience & therapeutics,
G Manfredi, and M F Beal
January 2013, Journal of biological regulators and homeostatic agents,
G Manfredi, and M F Beal
January 2021, Frontiers in cell and developmental biology,
G Manfredi, and M F Beal
January 2022, Frontiers in aging neuroscience,
G Manfredi, and M F Beal
July 2020, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!