Neural regulation of respiration. 1975

R A Mitchell, and A J Berger

The main respiratory muscles are under both voluntary and involuntary (automatic) control. These two control systems come from separate sites in the CNS and have separate descending pathways; the final integration of these outputs occurs at segmental levels in the cord. Voluntary control arises from the motor and premotor cortex and descends in the cord in the corticospinal tract. Involuntary control is mediated by both rhythmic and nonrhythmic systems located in the brainstem. Recent studies have associated the classic respiratory centers with specific nuclei in the brainstem. The pneumotaxic center is located in the nucleus parabrachialis, and the medullary respiratory centers are located in the vicinity of the nucleus of the solitary tract (dorsal respiratory group) and the nuclei ambiguus and retroambigualis (ventral respiratory group). Most axons from the medullary nuclei cross in the medulla and descend in the ventral and lateral columns to segmental levels. The classic medullary respiratory centers described by Pitts have been shown to be the site of origin of tonically firing long reticulospinal axons that descend in the ventral and lateral columns. This system is thought to provide a nonrhythmic involuntary biasing of the membrane potential of respiratory motoneurons in the cord. The site of generation of eupnic breathing and the mechanism of rhythm generation remain unknown. However, recent studies indicate that reciprocal inhibition between populations of inspiratory and expiratory cells (bistable oscillator model) does not occur in the medulla; rather we suggest that inhibitory phasing of inspiratory cells generates inspiratory rhythm, and periodic inhibition of tonically active expiratory neurons results in respiratory rhythm. We suggest that the inhibitory phasing occurs in the dorsal respiratory group, which is also the site of integration of respiratory afferents. The main site of integration of the voluntary and involuntary control systems is the cord where the respiratory motoneuron output is determined by descending information from these systems, as well as with intrasegmental and intersegmental reflexes. Separation of the voluntary and involuntary control systems also occurs in man and discrete lesions may interrupt one system without significant alteration of the other.

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D012125 Respiratory Center Part of the brain located in the MEDULLA OBLONGATA and PONS. It receives neural, chemical and hormonal signals, and controls the rate and depth of respiratory movements of the DIAPHRAGM and other respiratory muscles. Center, Respiratory,Centers, Respiratory,Respiratory Centers
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus

Related Publications

R A Mitchell, and A J Berger
January 1980, Clinics in chest medicine,
R A Mitchell, and A J Berger
June 1992, Problems in veterinary medicine,
R A Mitchell, and A J Berger
January 1952, Terapevticheskii arkhiv,
R A Mitchell, and A J Berger
September 1951, Prakticky lekar,
R A Mitchell, and A J Berger
October 1958, Physiological reviews,
R A Mitchell, and A J Berger
January 1967, Rivista di medicina aeronautica e spaziale,
R A Mitchell, and A J Berger
January 1954, Duodecim; laaketieteellinen aikakauskirja,
R A Mitchell, and A J Berger
January 1964, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere,
R A Mitchell, and A J Berger
January 1978, Acta anaesthesiologica Scandinavica. Supplementum,
Copied contents to your clipboard!