Effect of 1,25(OH)2D3 on expression of estrogen receptor-alpha mRNA on rat osteosarcoma cell line (ROS 17/2.8). 2000

M Ohsawa, and H Mizunuma, and I Kagami, and S Miyamoto, and T Kanuma, and Y Ibuki
Department of Obstetrics and Gynecology, Gunma University School of Medicine, Maebashi, Japan.

In order to investigate the regulatory mechanisms of estrogen receptors (ER) in bone cells, changes in ER-alpha mRNA levels of rat osteosarcoma cell line (ROS 17/2.8) before and after exposure to 1,25(OH)2D3 and 17-beta estradiol respectively were measured by quantitative polymerase chain reaction using an internal standard. ER mRNA levels in the ROS 17/2.8 cultured with the medium alone had 5.029 +/- 1.623 mol/g total RNA x 10(-13) and were not statistically different from those cultured in the presence of 1,25(OH)2D3 at concentrations of 10(-12) M and less. ER mRNA levels in the ROS 17/2.8 cell line showed a small but a significant increase as a result of stimulation by 1,25(OH)2D3 at concentrations of 10(-10) and 10(-11) M. However, ER mRNA levels in ROS 17/2.8 cultured in the presence of 1,25(OH)2D3 at concentrations of 10(-9) M were not statistically different from those of the control. On the other hand, the expression of ER in ROS 17/2.8 cells cultured for 3 hours with various doses of 1,25(OH)2D3 showed, by immunoblotting methods, a significant increase at the dose of 10(-10) M in the expression of ER. Although a physiological significance is obscure, these observations suggest that 1,25(OH)2D3 plays a part in the expression of ER in ROS 17/2.8. No significant changes were seen in the expression of ER mRNA and the synthesis of ER as a result of stimulation by the estradiol.

UI MeSH Term Description Entries
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012516 Osteosarcoma A sarcoma originating in bone-forming cells, affecting the ends of long bones. It is the most common and most malignant of sarcomas of the bones, and occurs chiefly among 10- to 25-year-old youths. (From Stedman, 25th ed) Sarcoma, Osteogenic,Osteogenic Sarcoma,Osteosarcoma Tumor,Osteogenic Sarcomas,Osteosarcoma Tumors,Osteosarcomas,Sarcomas, Osteogenic,Tumor, Osteosarcoma,Tumors, Osteosarcoma
D013250 Steroid Hydroxylases Cytochrome P-450 monooxygenases (MIXED FUNCTION OXYGENASES) that are important in steroid biosynthesis and metabolism. Steroid Hydroxylase,Steroid Monooxygenases,Hydroxylase, Steroid,Hydroxylases, Steroid,Monooxygenases, Steroid
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D047628 Estrogen Receptor alpha One of the ESTROGEN RECEPTORS that has marked affinity for ESTRADIOL. Its expression and function differs from, and in some ways opposes, ESTROGEN RECEPTOR BETA. ERalpha,Estradiol Receptor alpha,Estrogen Receptor 1,Estrogen Receptors alpha,Receptor alpha, Estrogen,Receptor alpha, Estradiol,alpha, Estradiol Receptor
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Ohsawa, and H Mizunuma, and I Kagami, and S Miyamoto, and T Kanuma, and Y Ibuki
June 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
M Ohsawa, and H Mizunuma, and I Kagami, and S Miyamoto, and T Kanuma, and Y Ibuki
July 1989, Endocrinology,
M Ohsawa, and H Mizunuma, and I Kagami, and S Miyamoto, and T Kanuma, and Y Ibuki
January 1990, Biochimica et biophysica acta,
M Ohsawa, and H Mizunuma, and I Kagami, and S Miyamoto, and T Kanuma, and Y Ibuki
April 1999, Journal of cellular biochemistry,
M Ohsawa, and H Mizunuma, and I Kagami, and S Miyamoto, and T Kanuma, and Y Ibuki
October 1986, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
M Ohsawa, and H Mizunuma, and I Kagami, and S Miyamoto, and T Kanuma, and Y Ibuki
February 2000, Endocrine,
M Ohsawa, and H Mizunuma, and I Kagami, and S Miyamoto, and T Kanuma, and Y Ibuki
December 1979, Research communications in chemical pathology and pharmacology,
M Ohsawa, and H Mizunuma, and I Kagami, and S Miyamoto, and T Kanuma, and Y Ibuki
January 1985, Endocrinology,
M Ohsawa, and H Mizunuma, and I Kagami, and S Miyamoto, and T Kanuma, and Y Ibuki
April 1982, The Journal of biological chemistry,
M Ohsawa, and H Mizunuma, and I Kagami, and S Miyamoto, and T Kanuma, and Y Ibuki
October 2017, The Journal of steroid biochemistry and molecular biology,
Copied contents to your clipboard!