Time-course of blood-brain barrier permeability changes after experimental subarachnoid haemorrhage. 2000

A Germanò, and D d'Avella, and C Imperatore, and G Caruso, and F Tomasello
Neurosurgical Clinic, University of Messina School of Medicine, Italy.

An increase in blood-brain barrier (BBB) permeability after subarachnoid haemorrhage (SAH) has been described in humans and has been correlated with delayed cerebral ischemia and poor clinical outcome. Few studies examined in the laboratory the relationship between SAH and BBB, with contrasting results due to limitations in experimental probes adopted and in timing of observation. The aim of this study was to quantify the time-course of BBB changes after experimental SAH. Groups of eight rats received injections of 400 microl of autologous arterial blood into the cisterna magna. BBB was assessed 6, 12, 24, 36, 48, 60, and 72 hours after SAH and in sham-operated animals separately for cerebral cortex, i.e. frontal, temporal, parietal, occipital, subcortical gray matter (Caudate-Putamen-Thalamus), cerebellar cortex and nuclei, and brain stem by a spectrophotofluorimetric evaluation of Evans Blue dye extravasation. As compared to sham-operated controls, SAH determined a significant BBB permeability change beginning 36 hours after SAH, peaking at 48 hours, and normalizing on day 3. This study provides a quantitative description of the temporal progression and recovery of BBB dysfunction after SAH. These results have implications for the management of aneurysm patients and for assessing the rationale and the therapeutic window of new pharmacological approaches.

UI MeSH Term Description Entries
D008297 Male Males
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue
D005070 Evans Blue An azo dye used in blood volume and cardiac output measurement by the dye dilution method. It is very soluble, strongly bound to plasma albumin, and disappears very slowly. Azovan Blue,C.I. 23860,C.I. Direct Blue 53,Evan's Blue,Blue, Azovan,Blue, Evan's,Blue, Evans,Evan Blue
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013345 Subarachnoid Hemorrhage Bleeding into the intracranial or spinal SUBARACHNOID SPACE, most resulting from INTRACRANIAL ANEURYSM rupture. It can occur after traumatic injuries (SUBARACHNOID HEMORRHAGE, TRAUMATIC). Clinical features include HEADACHE; NAUSEA; VOMITING, nuchal rigidity, variable neurological deficits and reduced mental status. Hemorrhage, Subarachnoid,Perinatal Subarachnoid Hemorrhage,Subarachnoid Hemorrhage, Aneurysmal,Subarachnoid Hemorrhage, Spontaneous,SAH (Subarachnoid Hemorrhage),Subarachnoid Hemorrhage, Intracranial,Aneurysmal Subarachnoid Hemorrhage,Aneurysmal Subarachnoid Hemorrhages,Hemorrhage, Aneurysmal Subarachnoid,Hemorrhage, Intracranial Subarachnoid,Hemorrhage, Perinatal Subarachnoid,Hemorrhage, Spontaneous Subarachnoid,Hemorrhages, Aneurysmal Subarachnoid,Hemorrhages, Intracranial Subarachnoid,Hemorrhages, Perinatal Subarachnoid,Hemorrhages, Spontaneous Subarachnoid,Hemorrhages, Subarachnoid,Intracranial Subarachnoid Hemorrhage,Intracranial Subarachnoid Hemorrhages,Perinatal Subarachnoid Hemorrhages,SAHs (Subarachnoid Hemorrhage),Spontaneous Subarachnoid Hemorrhage,Spontaneous Subarachnoid Hemorrhages,Subarachnoid Hemorrhage, Perinatal,Subarachnoid Hemorrhages,Subarachnoid Hemorrhages, Aneurysmal,Subarachnoid Hemorrhages, Intracranial,Subarachnoid Hemorrhages, Perinatal,Subarachnoid Hemorrhages, Spontaneous
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A Germanò, and D d'Avella, and C Imperatore, and G Caruso, and F Tomasello
January 1982, Acta neurochirurgica,
A Germanò, and D d'Avella, and C Imperatore, and G Caruso, and F Tomasello
June 1992, Neurosurgery,
A Germanò, and D d'Avella, and C Imperatore, and G Caruso, and F Tomasello
January 1989, Acta neurochirurgica,
A Germanò, and D d'Avella, and C Imperatore, and G Caruso, and F Tomasello
August 2015, Neuroradiology,
A Germanò, and D d'Avella, and C Imperatore, and G Caruso, and F Tomasello
January 1992, Neurosurgery,
A Germanò, and D d'Avella, and C Imperatore, and G Caruso, and F Tomasello
April 2015, Metabolic brain disease,
A Germanò, and D d'Avella, and C Imperatore, and G Caruso, and F Tomasello
April 2007, Journal of neurotrauma,
A Germanò, and D d'Avella, and C Imperatore, and G Caruso, and F Tomasello
June 2023, Stroke and vascular neurology,
A Germanò, and D d'Avella, and C Imperatore, and G Caruso, and F Tomasello
November 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
A Germanò, and D d'Avella, and C Imperatore, and G Caruso, and F Tomasello
August 2020, Translational stroke research,
Copied contents to your clipboard!