Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide. 2000

J W Chen, and R A Eatock
Neuroscience Program, University of Rochester, Rochester, New York 14642, USA.

Mammalian vestibular organs have two types of hair cell, type I and type II, which differ morphologically and electrophysiologically. Type I hair cells alone express an outwardly rectifying current, I(K, L), which activates at relatively negative voltages. We used whole cell and patch configurations to study I(K,L) in hair cells isolated from the sensory epithelia of rat semicircular canals. I(K,L) was potassium selective, blocked by 4-aminopyridine, and permeable to internal cesium. It activated with sigmoidal kinetics and was half-maximally activated at -74.5 +/- 1.6 mV (n = 35; range -91 to -50 mV). It was a very large conductance (91 +/- 8 nS at -37 mV; 35 nS/pF for a cell of average size). Patch recordings from type I cells revealed a candidate ion channel with a conductance of 20-30 pS. Because I(K,L) was activated at the resting potential, the cells had low input resistances (R(m)): median 25 MOmega at -67 mV versus 1.3 GOmega for type II cells. Consequently, injected currents comparable to large transduction currents (300 pA) evoked small (</=10 mV) voltage responses. The cells' small voltage responses and negative resting potentials (V(R) = -81.3 +/- 0.2 mV, n = 144) pose a problem for afferent neurotransmission: how does the receptor potential depolarize the cell into the activation range of Ca(2+) channels (positive to -60 mV) that mediate transmitter release? One possibility, suggested by spontaneous positive shifts in the activation range of I(K,L) during whole cell recording, is that the activation range might be modulated in vivo. Any factor that reduces the number of I(K,L) channels open at V(R) will increase R(m) and depolarize V(R). Nitric oxide (NO) is an ion channel modulator that is present in vestibular epithelia. Four different NO donors, applied externally, inhibited the I(K,L) conductance at -67 mV, with mean effects ranging from 33 to 76%. The NO donor sodium nitroprusside inhibited channel activity in patches when they were cell-attached but not excised, suggesting an intracellular cascade. Consistent with an NO-cGMP cascade, 8-bromo-cGMP also inhibited whole cell I(K,L). Ca(2+)-dependent NO synthase is reported to be in hair cells and nerve terminals in the vestibular epithelium. Excitatory input to vestibular organs may lead, through Ca(2+) influx, to NO production and inhibition of I(K,L). The resulting increase in R(m) would augment the receptor potential, a form of positive feedback.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008981 Molsidomine A morpholinyl sydnone imine ethyl ester, having a nitrogen in place of the keto oxygen. It acts as NITRIC OXIDE DONORS and is a vasodilator that has been used in ANGINA PECTORIS. Morsydomine,Corpea,Corvaton,Duracoron,Fali-Cor,Korvatone,MTW-Molsidomin,Molsi 1A Pharma,Molsi-AZU,Molsi-Puren,Molsibeta,Molsicor,Molsidain,Molsidomin,Molsidomin Heumann,Molsidomin Stada,Molsidomin Von Ct,Molsidomin-Ratiopharm,Molsihexal,Molsiket,SIN-10,Sydnopharm,Fali Cor,Heumann, Molsidomin,MTW Molsidomin,Molsi AZU,Molsi Puren,Molsidomin Ratiopharm,SIN 10,SIN10,Von Ct, Molsidomin
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010396 Penicillamine 3-Mercapto-D-valine. The most characteristic degradation product of the penicillin antibiotics. It is used as an antirheumatic and as a chelating agent in Wilson's disease. Dimethylcysteine,Mercaptovaline,beta,beta-Dimethylcysteine,Copper Penicillaminate,Cuprenil,Cuprimine,D-3-Mercaptovaline,D-Penicillamine,Metalcaptase,D 3 Mercaptovaline,D Penicillamine,Penicillaminate, Copper,beta,beta Dimethylcysteine
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D005942 Gluconates Derivatives of gluconic acid (the structural formula HOCH2(CHOH)4COOH), including its salts and esters. Copper Gluconate,Gluconate, Copper
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006162 Guanylate Cyclase An enzyme that catalyzes the conversion of GTP to 3',5'-cyclic GMP and pyrophosphate. It also acts on ITP and dGTP. (From Enzyme Nomenclature, 1992) EC 4.6.1.2. Guanyl Cyclase,Deoxyguanylate Cyclase,Guanylyl Cyclase,Inosinate Cyclase,Cyclase, Deoxyguanylate,Cyclase, Guanyl,Cyclase, Guanylate,Cyclase, Guanylyl,Cyclase, Inosinate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012665 Semicircular Canals Three long canals (anterior, posterior, and lateral) of the bony labyrinth. They are set at right angles to each other and are situated posterosuperior to the vestibule of the bony labyrinth (VESTIBULAR LABYRINTH). The semicircular canals have five openings into the vestibule with one shared by the anterior and the posterior canals. Within the canals are the SEMICIRCULAR DUCTS. Semi-Circular Canals,Canal, Semi-Circular,Canal, Semicircular,Semi Circular Canals,Semi-Circular Canal,Semicircular Canal

Related Publications

J W Chen, and R A Eatock
January 1994, Journal of neurophysiology,
J W Chen, and R A Eatock
February 2010, Proceedings of the National Academy of Sciences of the United States of America,
J W Chen, and R A Eatock
March 2000, Biophysical journal,
J W Chen, and R A Eatock
May 1996, Journal of neurophysiology,
J W Chen, and R A Eatock
February 2007, Journal of neurophysiology,
Copied contents to your clipboard!