Peroxisome biogenesis disorders: genetics and cell biology. 2000

S J Gould, and D Valle
Departments of Biological Chemistry and Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. sgould@jhmi.edu

Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum disease and rhizomelic chondrodysplasia punctata are progressive disorders characterized by loss of multiple peroxisomal metabolic functions. These diseases are inherited in an autosomal recessive manner, are caused by defects in the import of peroxisomal matrix proteins and are referred to as the peroxisome biogenesis disorders (PBDs). Recent studies have identified the PEX genes that are mutated in 11 of the 12 known complementation groups of PBD patients. This article reviews these advances in PBD genetics and discusses how studies of human PEX genes, their protein products and PBD cell lines are shaping current models of peroxisome biogenesis.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D018901 Peroxisomal Disorders A heterogeneous group of inherited metabolic disorders marked by absent or dysfunctional PEROXISOMES. Peroxisomal enzymatic abnormalities may be single or multiple. Biosynthetic peroxisomal pathways are compromised, including the ability to synthesize ether lipids and to oxidize long-chain fatty acid precursors. Diseases in this category include ZELLWEGER SYNDROME; INFANTILE REFSUM DISEASE; rhizomelic chondrodysplasia (CHONDRODYSPLASIA PUNCTATA, RHIZOMELIC); hyperpipecolic acidemia; neonatal adrenoleukodystrophy; and ADRENOLEUKODYSTROPHY (X-linked). Neurologic dysfunction is a prominent feature of most peroxisomal disorders. Adrenoleukodystrophy, Neonatal,Hyperpipecolic Acidemia,Adrenoleukodystrophy, Autosomal Neonatal Form,Adrenoleukodystrophy, Autosomal, Neonatal Form,Hyperpipecolatemia,Neonatal Adrenoleukodystrophy,Peroxisomal Dysfunction, General,Peroxisomal Dysfunction, Multiple,Peroxisomal Dysfunction, Single,Acidemia, Hyperpipecolic,Acidemias, Hyperpipecolic,Adrenoleukodystrophies, Neonatal,Dysfunction, General Peroxisomal,Dysfunction, Multiple Peroxisomal,Dysfunction, Single Peroxisomal,Dysfunctions, General Peroxisomal,Dysfunctions, Multiple Peroxisomal,Dysfunctions, Single Peroxisomal,General Peroxisomal Dysfunction,General Peroxisomal Dysfunctions,Hyperpipecolic Acidemias,Multiple Peroxisomal Dysfunction,Multiple Peroxisomal Dysfunctions,Neonatal Adrenoleukodystrophies,Peroxisomal Disorder,Peroxisomal Dysfunctions, General,Peroxisomal Dysfunctions, Multiple,Peroxisomal Dysfunctions, Single,Single Peroxisomal Dysfunction,Single Peroxisomal Dysfunctions

Related Publications

S J Gould, and D Valle
June 2000, FEBS letters,
S J Gould, and D Valle
September 2012, Biochimica et biophysica acta,
S J Gould, and D Valle
January 2020, Advances in experimental medicine and biology,
S J Gould, and D Valle
November 2016, Translational science of rare diseases,
S J Gould, and D Valle
December 2006, Biochimica et biophysica acta,
S J Gould, and D Valle
January 2000, Annual review of genetics,
S J Gould, and D Valle
September 1993, Nihon rinsho. Japanese journal of clinical medicine,
S J Gould, and D Valle
January 2016, Proceedings of the Japan Academy. Series B, Physical and biological sciences,
S J Gould, and D Valle
June 2003, Seikagaku. The Journal of Japanese Biochemical Society,
Copied contents to your clipboard!