Unique structural and functional properties of the ATP-binding domain of atypical protein kinase C-iota. 2000

M Spitaler, and A Villunger, and H Grunicke, and F Uberall
Institut für Medizinische Chemie und Biochemie, University of Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria. spitaler@uibk.ac.at

Atypical protein kinase C-iota (aPKCiota) plays an important role in mitogenic signaling, actin cytoskeleton organization, and cell survival. Apart from the differences in the regulatory domain, the catalytic domain of aPKCiota differs considerably from other known kinases, because it contains a modification within the glycine-rich loop motif (GXGXXG) that is found in the nucleotide-binding fold of virtually all nucleotide-binding proteins including PKCs, Ras, adenylate kinase, and the mitochondrial F1-ATPase. We have used site-directed mutagenesis and kinetic analysis to investigate whether these sequence differences affect the nucleotide binding properties and catalytic activity of aPKCiota. When lysine 274, a residue essential for ATP binding and activity conserved in most protein kinases, was replaced by arginine (K274R mutant), aPKCiota retained its normal kinase activity. This is in sharp contrast to results published for any other PKC or even distantly related kinases like phosphoinositide 3-kinase gamma, where the same mutation completely abrogated the kinase activity. Furthermore, the sensitivity of aPKCiota for inhibition by GF109203X, a substance acting on the ATP-binding site, was not altered in the K274R mutant. In contrast, replacement of Lys-274 by tryptophan (K274W) completely abolished the kinase activity of PKCiota. In accordance with results obtained with other kinase-defective PKC mutants, in cultured cells aPKCiota-K274W acted in a dominant negative fashion on signal transduction pathways involving endogenous aPKCiota, whereas the effect of the catalytically active K274R mutant was identical to the wild type enzyme. In summary, aPKCiota differs from classical and novel PKCs also in the catalytic domain. This information could be of significant value for the development of specific inhibitors of aPKCiota as a key factor in central signaling pathways.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

M Spitaler, and A Villunger, and H Grunicke, and F Uberall
November 2014, The Journal of biological chemistry,
M Spitaler, and A Villunger, and H Grunicke, and F Uberall
March 2008, Journal of cell science,
M Spitaler, and A Villunger, and H Grunicke, and F Uberall
March 2019, ACS medicinal chemistry letters,
M Spitaler, and A Villunger, and H Grunicke, and F Uberall
September 1989, Molecular pharmacology,
M Spitaler, and A Villunger, and H Grunicke, and F Uberall
June 2009, The Journal of surgical research,
M Spitaler, and A Villunger, and H Grunicke, and F Uberall
October 2001, The Biochemical journal,
M Spitaler, and A Villunger, and H Grunicke, and F Uberall
October 1997, The Journal of biological chemistry,
M Spitaler, and A Villunger, and H Grunicke, and F Uberall
July 2008, Cancer research,
M Spitaler, and A Villunger, and H Grunicke, and F Uberall
January 2007, Gene expression patterns : GEP,
M Spitaler, and A Villunger, and H Grunicke, and F Uberall
September 2005, Journal of molecular biology,
Copied contents to your clipboard!